Open Access
Open access
volume 22 issue 1 publication number 139

Temperature and current flow effects of different electrode placement in shoulder capacitive-resistive electric transfer applications: a cadaveric study

Jacobo Rodríguez-Sanz 1
Carlos López-de-Celis 1, 2
César Hidalgo-García 3
Max Canet Vintró 1
Pablo Fanlo Mazas 3
Albert Pérez-Bellmunt 1
Publication typeJournal Article
Publication date2021-02-04
scimago Q2
wos Q2
SJR0.805
CiteScore4.2
Impact factor2.4
ISSN14712474
Rheumatology
Orthopedics and Sports Medicine
Abstract
Impingement syndrome is currently estimated to represent 60% of all shoulder pain disorders. Capacitive-Resistive electric transfer therapy is aimed to provoke temperature and current flow changes in superficial and deep tissues. This in vitro study has evaluated the variation of temperature and current flow in the shoulder tissues during two different areas of application of the movable capacitive-resistive electric transfer electrode. A cross-sectional study designed, five fresh cryopreserved cadavers (10 shoulders) were included in this study. Four interventions (capacitive and resistive modes; low- and high-power) were performed for 5 min each by a diathermy “T-Plus” device in two shoulder regions: postero-superior and antero-lateral. Supraspinatus tendon, glenohumeral capsule and superficial temperatures were recorded at 1-min intervals and 5 min after treatment. A statistically significant difference was found only for the superficial area and time interaction, with high power-resistive application at the postero-superior shoulder area (P< 0.035). All the applications showed a 5 min after treatment temperature increase compared with the basal data, in all the application points. Superficial temperature in the high power-resistive application showed the greatest percent increase (42.93% ± 22.58), followed by the temperature in the tendon area with the same high power-resistive application (22.97% ± 14.70). The high power-resistive application showed the greatest percent of temperature increase in the applications, reaching 65.9% ± 22.96 at 5-min at the superficial level, and 32% ± 24.25 at 4-min at the level of the supraspinatus tendon. At the capsule level, high power-resistive was also the application that showed the greatest percent of increase, with 21.52% ± 16.16. The application with the lowest percent of temperature increase was the low power-capacitive, with a mean value of 4.86% at supraspinatus tendon level and 7.47% at capsular level. The shoulder postero-superior or antero-lateral areas of application of capacitive-resistive electric transfer did not cause statistically significant differences in the temperature changes in either supraspinatus tendon or glenohumeral capsule tissues in cadaveric samples. The high power-resistive application in the postero-superior area significantly increased superficial temperature compared with the same application in the antero-lateral position area.
Found 
Found 

Top-30

Journals

1
Journal of Sport Rehabilitation
1 publication, 10%
Oral
1 publication, 10%
International Journal of Environmental Research and Public Health
1 publication, 10%
Journal of Clinical Medicine
1 publication, 10%
Scientific Reports
1 publication, 10%
Fisioterapia
1 publication, 10%
Journal of Physics: Conference Series
1 publication, 10%
Advances in Experimental Medicine and Biology
1 publication, 10%
International Journal of Hyperthermia
1 publication, 10%
Journal of Chiropractic Medicine
1 publication, 10%
1

Publishers

1
2
3
MDPI
3 publications, 30%
Springer Nature
2 publications, 20%
Elsevier
2 publications, 20%
Human Kinetics
1 publication, 10%
IOP Publishing
1 publication, 10%
Taylor & Francis
1 publication, 10%
1
2
3
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
10
Share
Cite this
GOST |
Cite this
GOST Copy
Rodríguez-Sanz J. et al. Temperature and current flow effects of different electrode placement in shoulder capacitive-resistive electric transfer applications: a cadaveric study // BMC Musculoskeletal Disorders. 2021. Vol. 22. No. 1. 139
GOST all authors (up to 50) Copy
Rodríguez-Sanz J., López-de-Celis C., Hidalgo-García C., Canet Vintró M., Fanlo Mazas P., Pérez-Bellmunt A. Temperature and current flow effects of different electrode placement in shoulder capacitive-resistive electric transfer applications: a cadaveric study // BMC Musculoskeletal Disorders. 2021. Vol. 22. No. 1. 139
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1186/s12891-020-03918-7
UR - https://doi.org/10.1186/s12891-020-03918-7
TI - Temperature and current flow effects of different electrode placement in shoulder capacitive-resistive electric transfer applications: a cadaveric study
T2 - BMC Musculoskeletal Disorders
AU - Rodríguez-Sanz, Jacobo
AU - López-de-Celis, Carlos
AU - Hidalgo-García, César
AU - Canet Vintró, Max
AU - Fanlo Mazas, Pablo
AU - Pérez-Bellmunt, Albert
PY - 2021
DA - 2021/02/04
PB - Springer Nature
IS - 1
VL - 22
PMID - 33541324
SN - 1471-2474
ER -
BibTex
Cite this
BibTex (up to 50 authors) Copy
@article{2021_Rodríguez-Sanz,
author = {Jacobo Rodríguez-Sanz and Carlos López-de-Celis and César Hidalgo-García and Max Canet Vintró and Pablo Fanlo Mazas and Albert Pérez-Bellmunt},
title = {Temperature and current flow effects of different electrode placement in shoulder capacitive-resistive electric transfer applications: a cadaveric study},
journal = {BMC Musculoskeletal Disorders},
year = {2021},
volume = {22},
publisher = {Springer Nature},
month = {feb},
url = {https://doi.org/10.1186/s12891-020-03918-7},
number = {1},
pages = {139},
doi = {10.1186/s12891-020-03918-7}
}