Open Access
Open access
Journal of Cheminformatics, volume 13, issue 1, publication number 14

Using GANs with adaptive training data to search for new molecules

Publication typeJournal Article
Publication date2021-02-23
scimago Q1
wos Q1
SJR1.745
CiteScore14.1
Impact factor7.1
ISSN17582946
Physical and Theoretical Chemistry
Computer Science Applications
Library and Information Sciences
Computer Graphics and Computer-Aided Design
Abstract
The process of drug discovery involves a search over the space of all possible chemical compounds. Generative Adversarial Networks (GANs) provide a valuable tool towards exploring chemical space and optimizing known compounds for a desired functionality. Standard approaches to training GANs, however, can result in mode collapse, in which the generator primarily produces samples closely related to a small subset of the training data. In contrast, the search for novel compounds necessitates exploration beyond the original data. Here, we present an approach to training GANs that promotes incremental exploration and limits the impacts of mode collapse using concepts from Genetic Algorithms. In our approach, valid samples from the generator are used to replace samples from the training data. We consider both random and guided selection along with recombination during replacement. By tracking the number of novel compounds produced during training, we show that updates to the training data drastically outperform the traditional approach, increasing potential applications for GANs in drug discovery.
Found 
Found 

Top-30

Journals

1
2
3
1
2
3

Publishers

2
4
6
8
10
12
2
4
6
8
10
12
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
Share
Cite this
GOST | RIS | BibTex
Found error?