Open Access
Open access
Journal of Cheminformatics, volume 13, issue 1, publication number 20

DECIMER-Segmentation: Automated extraction of chemical structure depictions from scientific literature

Publication typeJournal Article
Publication date2021-03-08
scimago Q1
wos Q1
SJR1.745
CiteScore14.1
Impact factor7.1
ISSN17582946
Physical and Theoretical Chemistry
Computer Science Applications
Library and Information Sciences
Computer Graphics and Computer-Aided Design
Abstract
Chemistry looks back at many decades of publications on chemical compounds, their structures and properties, in scientific articles. Liberating this knowledge (semi-)automatically and making it available to the world in open-access databases is a current challenge. Apart from mining textual information, Optical Chemical Structure Recognition (OCSR), the translation of an image of a chemical structure into a machine-readable representation, is part of this workflow. As the OCSR process requires an image containing a chemical structure, there is a need for a publicly available tool that automatically recognizes and segments chemical structure depictions from scientific publications. This is especially important for older documents which are only available as scanned pages. Here, we present DECIMER (Deep lEarning for Chemical IMagE Recognition) Segmentation, the first open-source, deep learning-based tool for automated recognition and segmentation of chemical structures from the scientific literature. The workflow is divided into two main stages. During the detection step, a deep learning model recognizes chemical structure depictions and creates masks which define their positions on the input page. Subsequently, potentially incomplete masks are expanded in a post-processing workflow. The performance of DECIMER Segmentation has been manually evaluated on three sets of publications from different publishers. The approach operates on bitmap images of journal pages to be applicable also to older articles before the introduction of vector images in PDFs. By making the source code and the trained model publicly available, we hope to contribute to the development of comprehensive chemical data extraction workflows. In order to facilitate access to DECIMER Segmentation, we also developed a web application. The web application, available at https://decimer.ai , lets the user upload a pdf file and retrieve the segmented structure depictions.
Found 
Found 

Top-30

Journals

1
2
3
4
5
6
1
2
3
4
5
6

Publishers

1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
Share
Cite this
GOST | RIS | BibTex
Found error?