Open Access
Open access
Journal of Cheminformatics, volume 16, issue 1, publication number 78

Advancements in hand-drawn chemical structure recognition through an enhanced DECIMER architecture

Publication typeJournal Article
Publication date2024-07-05
scimago Q1
wos Q1
SJR1.745
CiteScore14.1
Impact factor7.1
ISSN17582946
Abstract

Accurate recognition of hand-drawn chemical structures is crucial for digitising hand-written chemical information in traditional laboratory notebooks or facilitating stylus-based structure entry on tablets or smartphones. However, the inherent variability in hand-drawn structures poses challenges for existing Optical Chemical Structure Recognition (OCSR) software. To address this, we present an enhanced Deep lEarning for Chemical ImagE Recognition (DECIMER) architecture that leverages a combination of Convolutional Neural Networks (CNNs) and Transformers to improve the recognition of hand-drawn chemical structures. The model incorporates an EfficientNetV2 CNN encoder that extracts features from hand-drawn images, followed by a Transformer decoder that converts the extracted features into Simplified Molecular Input Line Entry System (SMILES) strings. Our models were trained using synthetic hand-drawn images generated by RanDepict, a tool for depicting chemical structures with different style elements. A benchmark was performed using a real-world dataset of hand-drawn chemical structures to evaluate the model's performance. The results indicate that our improved DECIMER architecture exhibits a significantly enhanced recognition accuracy compared to other approaches.

Scientific contribution

The new DECIMER model presented here refines our previous research efforts and is currently the only open-source model tailored specifically for the recognition of hand-drawn chemical structures. The enhanced model performs better in handling variations in handwriting styles, line thicknesses, and background noise, making it suitable for real-world applications. The DECIMER hand-drawn structure recognition model and its source code have been made available as an open-source package under a permissive license.

Graphical Abstract
Found 
Found 

Top-30

Publishers

1
1
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?