Open Access
Open access
том 21 издание 1 номер публикации 27

Plasma proteomic characterization of colorectal cancer patients with FOLFOX chemotherapy by integrated proteomics technology

Xi Wang 1, 2, 3
Keren Zhang 3
WAN HE 1, 2
Luobin Zhang 3
Biwei Gao 1
Ruijun Tian 3
Ruilian Xu 1, 2
Тип публикацииJournal Article
Дата публикации2024-04-05
scimago Q1
wos Q2
БС1
SJR0.962
CiteScore4.3
Impact factor3.3
ISSN15426416, 15590275
Molecular Biology
Clinical Biochemistry
Molecular Medicine
Краткое описание
Background

Colorectal Cancer (CRC) is a prevalent form of cancer, and the effectiveness of the main postoperative chemotherapy treatment, FOLFOX, varies among patients. In this study, we aimed to identify potential biomarkers for predicting the prognosis of CRC patients treated with FOLFOX through plasma proteomic characterization.

Methods

Using a fully integrated sample preparation technology SISPROT-based proteomics workflow, we achieved deep proteome coverage and trained a machine learning model from a discovery cohort of 90 CRC patients to differentiate FOLFOX-sensitive and FOLFOX-resistant patients. The model was then validated by targeted proteomics on an independent test cohort of 26 patients.

Results

We achieved deep proteome coverage of 831 protein groups in total and 536 protein groups in average for non-depleted plasma from CRC patients by using a Orbitrap Exploris 240 with moderate sensitivity. Our results revealed distinct molecular changes in FOLFOX-sensitive and FOLFOX-resistant patients. We confidently identified known prognostic biomarkers for colorectal cancer, such as S100A4, LGALS1, and FABP5. The classifier based on the biomarker panel demonstrated a promised AUC value of 0.908 with 93% accuracy. Additionally, we established a protein panel to predict FOLFOX effectiveness, and several proteins within the panel were validated using targeted proteomic methods.

Conclusions

Our study sheds light on the pathways affected in CRC patients treated with FOLFOX chemotherapy and identifies potential biomarkers that could be valuable for prognosis prediction. Our findings showed the potential of mass spectrometry-based proteomics and machine learning as an unbiased and systematic approach for discovering biomarkers in CRC.

Найдено 
Найдено 

Топ-30

Журналы

1
Journal of integrative medicine
1 публикация, 100%
1

Издатели

1
Elsevier
1 публикация, 100%
1
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
1
Поделиться
Цитировать
ГОСТ |
Цитировать
Wang X. et al. Plasma proteomic characterization of colorectal cancer patients with FOLFOX chemotherapy by integrated proteomics technology // Clinical Proteomics. 2024. Vol. 21. No. 1. 27
ГОСТ со всеми авторами (до 50) Скопировать
Wang X., Zhang K., HE W., Zhang L., Gao B., Tian R., Xu R. Plasma proteomic characterization of colorectal cancer patients with FOLFOX chemotherapy by integrated proteomics technology // Clinical Proteomics. 2024. Vol. 21. No. 1. 27
RIS |
Цитировать
TY - JOUR
DO - 10.1186/s12014-024-09454-z
UR - https://clinicalproteomicsjournal.biomedcentral.com/articles/10.1186/s12014-024-09454-z
TI - Plasma proteomic characterization of colorectal cancer patients with FOLFOX chemotherapy by integrated proteomics technology
T2 - Clinical Proteomics
AU - Wang, Xi
AU - Zhang, Keren
AU - HE, WAN
AU - Zhang, Luobin
AU - Gao, Biwei
AU - Tian, Ruijun
AU - Xu, Ruilian
PY - 2024
DA - 2024/04/05
PB - Springer Nature
IS - 1
VL - 21
PMID - 38580967
SN - 1542-6416
SN - 1559-0275
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2024_Wang,
author = {Xi Wang and Keren Zhang and WAN HE and Luobin Zhang and Biwei Gao and Ruijun Tian and Ruilian Xu},
title = {Plasma proteomic characterization of colorectal cancer patients with FOLFOX chemotherapy by integrated proteomics technology},
journal = {Clinical Proteomics},
year = {2024},
volume = {21},
publisher = {Springer Nature},
month = {apr},
url = {https://clinicalproteomicsjournal.biomedcentral.com/articles/10.1186/s12014-024-09454-z},
number = {1},
pages = {27},
doi = {10.1186/s12014-024-09454-z}
}