Open Access
Open access
том 2024 издание 1 номер публикации 57

Multi-scale Information Aggregation for Spoofing Detection

Тип публикацииJournal Article
Дата публикации2024-11-05
scimago Q2
wos Q2
БС2
SJR0.417
CiteScore4.5
Impact factor1.9
ISSN16874714, 16874722
Краткое описание

Synthesis artifacts that span scales from small to large are important cues for spoofing detection. However, few spoofing detection models leverage artifacts across different scales together. In this paper, we propose a spoofing detection system built on SincNet and Deep Layer Aggregation (DLA), which leverages speech representations at different levels to distinguish synthetic speech. DLA is totally convolutional with an iterative tree-like structure. The unique topology of DLA makes possible compounding of speech features from convolution layers at different depths, and therefore the local and the global speech representations can be incorporated simultaneously. Moreover, SincNet is employed as the frontend feature extractor to circumvent manual feature extraction and selection. SincNet can learn fine-grained features directly from the input speech waveform, thus making the proposed spoofing detection system end-to-end. The proposed system outperforms the baselines when tested on ASVspoof LA and DF datasets. Notably, our single model surpasses all competing systems in ASVspoof DF competition with an equal error rate (EER) of 13.99%, which demonstrates the importance of multi-scale information aggregation for synthetic speech detection.

Найдено 
Найдено 

Топ-30

Журналы

1
IEEE Access
1 публикация, 50%
Applied Soft Computing Journal
1 публикация, 50%
1

Издатели

1
Institute of Electrical and Electronics Engineers (IEEE)
1 публикация, 50%
Elsevier
1 публикация, 50%
1
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
2
Поделиться
Цитировать
ГОСТ |
Цитировать
Li C. et al. Multi-scale Information Aggregation for Spoofing Detection // Eurasip Journal on Audio, Speech, and Music Processing. 2024. Vol. 2024. No. 1. 57
ГОСТ со всеми авторами (до 50) Скопировать
Li C., Wan Y., Yang F., Yang J. Multi-scale Information Aggregation for Spoofing Detection // Eurasip Journal on Audio, Speech, and Music Processing. 2024. Vol. 2024. No. 1. 57
RIS |
Цитировать
TY - JOUR
DO - 10.1186/s13636-024-00379-x
UR - https://asmp-eurasipjournals.springeropen.com/articles/10.1186/s13636-024-00379-x
TI - Multi-scale Information Aggregation for Spoofing Detection
T2 - Eurasip Journal on Audio, Speech, and Music Processing
AU - Li, Changtao
AU - Wan, Yi
AU - Yang, Feiran
AU - Yang, Jun
PY - 2024
DA - 2024/11/05
PB - Springer Nature
IS - 1
VL - 2024
SN - 1687-4714
SN - 1687-4722
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2024_Li,
author = {Changtao Li and Yi Wan and Feiran Yang and Jun Yang},
title = {Multi-scale Information Aggregation for Spoofing Detection},
journal = {Eurasip Journal on Audio, Speech, and Music Processing},
year = {2024},
volume = {2024},
publisher = {Springer Nature},
month = {nov},
url = {https://asmp-eurasipjournals.springeropen.com/articles/10.1186/s13636-024-00379-x},
number = {1},
pages = {57},
doi = {10.1186/s13636-024-00379-x}
}