Geophysics, volume 66, issue 1, pages 174-187

Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion

William Rodi 1
Randall L Mackie 2
Publication typeJournal Article
Publication date2001-01-01
Journal: Geophysics
scimago Q1
SJR1.438
CiteScore6.9
Impact factor3
ISSN00168033, 19422156
Geochemistry and Petrology
Geophysics
Abstract

We investigate a new algorithm for computing regularized solutions of the 2-D magnetotelluric inverse problem. The algorithm employs a nonlinear conjugate gradients (NLCG) scheme to minimize an objective function that penalizes data residuals and second spatial derivatives of resistivity. We compare this algorithm theoretically and numerically to two previous algorithms for constructing such “minimum‐structure” models: the Gauss‐Newton method, which solves a sequence of linearized inverse problems and has been the standard approach to nonlinear inversion in geophysics, and an algorithm due to Mackie and Madden, which solves a sequence of linearized inverse problems incompletely using a (linear) conjugate gradients technique. Numerical experiments involving synthetic and field data indicate that the two algorithms based on conjugate gradients (NLCG and Mackie‐Madden) are more efficient than the Gauss‐Newton algorithm in terms of both computer memory requirements and CPU time needed to find accurate solutions to problems of realistic size. This owes largely to the fact that the conjugate gradients‐based algorithms avoid two computationally intensive tasks that are performed at each step of a Gauss‐Newton iteration: calculation of the full Jacobian matrix of the forward modeling operator, and complete solution of a linear system on the model space. The numerical tests also show that the Mackie‐Madden algorithm reduces the objective function more quickly than our new NLCG algorithm in the early stages of minimization, but NLCG is more effective in the later computations. To help understand these results, we describe the Mackie‐Madden and new NLCG algorithms in detail and couch each as a special case of a more general conjugate gradients scheme for nonlinear inversion.

Top-30

Journals

10
20
30
40
50
60
70
80
10
20
30
40
50
60
70
80

Publishers

50
100
150
200
250
300
50
100
150
200
250
300
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?