AAPS Journal, volume 15, issue 4, pages 1232-1241

Comparison of Methods for Handling Missing Covariate Data

Publication typeJournal Article
Publication date2013-09-11
Journal: AAPS Journal
scimago Q1
SJR0.970
CiteScore7.8
Impact factor5
ISSN15507416
Pharmaceutical Science
Abstract
Missing covariate data is a common problem in nonlinear mixed effects modelling of clinical data. The aim of this study was to implement and compare methods for handling missing covariate data in nonlinear mixed effects modelling under different missing data mechanisms. Simulations generated data for 200 individuals with a 50% difference in clearance between males and females. Three different types of missing data mechanisms were simulated and information about sex was missing for 50% of the individuals. Six methods for handling the missing covariate were compared in a stochastic simulations and estimations study where 200 data sets were simulated. The methods were compared according to bias and precision of parameter estimates. Multiple imputation based on weight and response, full maximum likelihood modelling using information on weight and full maximum likelihood modelling where the proportion of males among the individuals lacking information about sex was estimated (EST) gave precise and unbiased estimates in the presence of missing data when data were missing completely at random or missing at random. When data were missing not at random, the only method resulting in low bias and high parameter precision was EST.
Found 
Found 

Top-30

Journals

1
2
3
4
5
6
7
1
2
3
4
5
6
7

Publishers

2
4
6
8
10
12
14
16
2
4
6
8
10
12
14
16
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?