Open Access
Open access
Mendel, volume 27, issue 2, pages 36-43

Improving Breast Cancer Classification using (SMOTE) Technique and Pectoral Muscle Removal in Mammographic Images

Veisi H., Sagheer A.M., Abdulla S.H.
Publication typeJournal Article
Publication date2021-12-21
Journal: Mendel
scimago Q3
SJR0.302
CiteScore2.2
Impact factor
ISSN18033814, 25713701
Computational Mathematics
Theoretical Computer Science
General Computer Science
Abstract

Computer-aided diagnosis methods are being developed to assist radiologists to improve the interpretation of mammograms for the detection and diagnose of breast cancer, reduce the errors and mistakes made by human beings. In addition, it provides a more accurate and reliable classification of benign and malignant abnormalities. In the mammogram diagnosis, the pectoral muscle appears in Mediolateral oblique views (MLO) of the right and left of the breast. Considering that, the pectoral muscle has the same density as the small suspicious masses in the image and can affect/bias the results of image processing methods. This paper presents a diagnosis method to detect an abnormality in mammograms automatically. Before abnormality identification, image-processing techniques are used to correctly segment the suspicious region-of-interest (ROI). The background of the mammograms has been darkened to distinguish the breast area from any blemishes or writings that will be removed. Then the breast area has been extracted after ignoring the empty regions around the breast in mammogram images. After that, the mammogram image is inverted and the inverted image is then subtracted from the initial image. For pectoral muscle removal, a region growing method using the K-means clustering method is used. Afterward, suspicious ROI is segmented utilizing the K-means with thresholding technique. To detect abnormalities in mammograms, shape-based features, moment invariants, and also fractal dimensions are extracted from the segmented ROI. The Mini-MIAS dataset is used to evaluate the proposed method and is predominately composed of benign samples with only a tiny percent of malignant samples. To accomplish far better classifier efficiency, the SMOTE algorithm is used to present new samples from the minority classes to get a balanced dataset. Random forest classifier utilized to classify the segmented region as benign and malignant. The experimental results obtained an accuracy of 97.1%, the sensitivity of 95.1%, and the achieved specificity is 98.5%.

Found 

Top-30

Journals

1
1

Publishers

1
1
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?