Open Access
Open access
том 15 издание 11 страницы e00765

Digesting Digital Health: A Study of Appropriateness and Readability of ChatGPT-Generated Gastroenterological Information

Avi Toiv 1, 2
Zachary Saleh 3, 4
Angela Ishak 1, 2
Eva Alsheik 3, 4
Deepak Venkat 3, 4
Neilanjan Nandi 5, 6
Tobias E Zuchelli 3, 4
1
 
Department of internal medicine, Henry Ford Hospital, Detroit, MI, USA
2
 
Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, USA;
3
 
Department of Gastroenterology, Henry Ford Hospital, Detroit, MI, USA
4
 
Division of Gastroenterology and Hepatology, Henry Ford Hospital, Detroit, Michigan, USA;
Тип публикацииJournal Article
Дата публикации2024-08-30
scimago Q1
wos Q2
БС2
SJR1.285
CiteScore5.6
Impact factor3.0
ISSN2155384X
Краткое описание
INTRODUCTION:

The advent of artificial intelligence–powered large language models capable of generating interactive responses to intricate queries marks a groundbreaking development in how patients access medical information. Our aim was to evaluate the appropriateness and readability of gastroenterological information generated by Chat Generative Pretrained Transformer (ChatGPT).

METHODS:

We analyzed responses generated by ChatGPT to 16 dialog-based queries assessing symptoms and treatments for gastrointestinal conditions and 13 definition-based queries on prevalent topics in gastroenterology. Three board-certified gastroenterologists evaluated output appropriateness with a 5-point Likert-scale proxy measurement of currency, relevance, accuracy, comprehensiveness, clarity, and urgency/next steps. Outputs with a score of 4 or 5 in all 6 categories were designated as “appropriate.” Output readability was assessed with Flesch Reading Ease score, Flesch-Kinkaid Reading Level, and Simple Measure of Gobbledygook scores.

RESULTS:

ChatGPT responses to 44% of the 16 dialog-based and 69% of the 13 definition-based questions were deemed appropriate, and the proportion of appropriate responses within the 2 groups of questions was not significantly different (P = 0.17). Notably, none of ChatGPT’s responses to questions related to gastrointestinal emergencies were designated appropriate. The mean readability scores showed that outputs were written at a college-level reading proficiency.

DISCUSSION:

ChatGPT can produce generally fitting responses to gastroenterological medical queries, but responses were constrained in appropriateness and readability, which limits the current utility of this large language model. Substantial development is essential before these models can be unequivocally endorsed as reliable sources of medical information.

Найдено 
Найдено 

Топ-30

Журналы

1
Bioengineering
1 публикация, 20%
Journal of Medical Internet Research
1 публикация, 20%
American Journal of Obstetrics and Gynecology
1 публикация, 20%
Frontiers in Public Health
1 публикация, 20%
1

Издатели

1
MDPI
1 публикация, 20%
JMIR Publications
1 публикация, 20%
Elsevier
1 публикация, 20%
Frontiers Media S.A.
1 публикация, 20%
Cold Spring Harbor Laboratory
1 публикация, 20%
1
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
5
Поделиться
Цитировать
ГОСТ |
Цитировать
Toiv A. et al. Digesting Digital Health: A Study of Appropriateness and Readability of ChatGPT-Generated Gastroenterological Information // Clinical and Translational Gastroenterology. 2024. Vol. 15. No. 11. p. e00765.
ГОСТ со всеми авторами (до 50) Скопировать
Toiv A., Saleh Z., Ishak A., Alsheik E., Venkat D., Nandi N., Zuchelli T. E. Digesting Digital Health: A Study of Appropriateness and Readability of ChatGPT-Generated Gastroenterological Information // Clinical and Translational Gastroenterology. 2024. Vol. 15. No. 11. p. e00765.
RIS |
Цитировать
TY - JOUR
DO - 10.14309/ctg.0000000000000765
UR - https://journals.lww.com/10.14309/ctg.0000000000000765
TI - Digesting Digital Health: A Study of Appropriateness and Readability of ChatGPT-Generated Gastroenterological Information
T2 - Clinical and Translational Gastroenterology
AU - Toiv, Avi
AU - Saleh, Zachary
AU - Ishak, Angela
AU - Alsheik, Eva
AU - Venkat, Deepak
AU - Nandi, Neilanjan
AU - Zuchelli, Tobias E
PY - 2024
DA - 2024/08/30
PB - Ovid Technologies (Wolters Kluwer Health)
SP - e00765
IS - 11
VL - 15
PMID - 39212302
SN - 2155-384X
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2024_Toiv,
author = {Avi Toiv and Zachary Saleh and Angela Ishak and Eva Alsheik and Deepak Venkat and Neilanjan Nandi and Tobias E Zuchelli},
title = {Digesting Digital Health: A Study of Appropriateness and Readability of ChatGPT-Generated Gastroenterological Information},
journal = {Clinical and Translational Gastroenterology},
year = {2024},
volume = {15},
publisher = {Ovid Technologies (Wolters Kluwer Health)},
month = {aug},
url = {https://journals.lww.com/10.14309/ctg.0000000000000765},
number = {11},
pages = {e00765},
doi = {10.14309/ctg.0000000000000765}
}
MLA
Цитировать
Toiv, Avi, et al. “Digesting Digital Health: A Study of Appropriateness and Readability of ChatGPT-Generated Gastroenterological Information.” Clinical and Translational Gastroenterology, vol. 15, no. 11, Aug. 2024, p. e00765. https://journals.lww.com/10.14309/ctg.0000000000000765.