volume 1 issue 1 pages 1

An enterprise financial data leakage risk prediction based on ARIMA-SVM combination model.

Qian Cao Qian Cao
Publication typeJournal Article
Publication date2023-01-01
scimago Q4
SJR0.136
CiteScore0.5
Impact factor
ISSN17510589, 17510597
Computer Science Applications
Control and Systems Engineering
Information Systems and Management

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
0
Share
Cite this
GOST |
Cite this
GOST Copy
Qian Cao Q. C. An enterprise financial data leakage risk prediction based on ARIMA-SVM combination model. // International Journal of Applied Systemic Studies. 2023. Vol. 1. No. 1. p. 1.
GOST all authors (up to 50) Copy
Qian Cao Q. C. An enterprise financial data leakage risk prediction based on ARIMA-SVM combination model. // International Journal of Applied Systemic Studies. 2023. Vol. 1. No. 1. p. 1.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1504/ijass.2023.10048600
UR - https://doi.org/10.1504/ijass.2023.10048600
TI - An enterprise financial data leakage risk prediction based on ARIMA-SVM combination model.
T2 - International Journal of Applied Systemic Studies
AU - Qian Cao, Qian Cao
PY - 2023
DA - 2023/01/01
PB - Inderscience Publishers
SP - 1
IS - 1
VL - 1
SN - 1751-0589
SN - 1751-0597
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2023_Qian Cao,
author = {Qian Cao Qian Cao},
title = {An enterprise financial data leakage risk prediction based on ARIMA-SVM combination model.},
journal = {International Journal of Applied Systemic Studies},
year = {2023},
volume = {1},
publisher = {Inderscience Publishers},
month = {jan},
url = {https://doi.org/10.1504/ijass.2023.10048600},
number = {1},
pages = {1},
doi = {10.1504/ijass.2023.10048600}
}
MLA
Cite this
MLA Copy
Qian Cao, Qian Cao. “An enterprise financial data leakage risk prediction based on ARIMA-SVM combination model..” International Journal of Applied Systemic Studies, vol. 1, no. 1, Jan. 2023, p. 1. https://doi.org/10.1504/ijass.2023.10048600.