An enterprise financial data leakage risk prediction based on ARIMA-SVM combination model.
Publication type: Journal Article
Publication date: 2023-01-01
scimago Q4
SJR: 0.136
CiteScore: 0.5
Impact factor: —
ISSN: 17510589, 17510597
Computer Science Applications
Control and Systems Engineering
Information Systems and Management
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
0
Total citations:
0
Cite this
GOST |
RIS |
BibTex |
MLA
Cite this
GOST
Copy
Qian Cao Q. C. An enterprise financial data leakage risk prediction based on ARIMA-SVM combination model. // International Journal of Applied Systemic Studies. 2023. Vol. 1. No. 1. p. 1.
GOST all authors (up to 50)
Copy
Qian Cao Q. C. An enterprise financial data leakage risk prediction based on ARIMA-SVM combination model. // International Journal of Applied Systemic Studies. 2023. Vol. 1. No. 1. p. 1.
Cite this
RIS
Copy
TY - JOUR
DO - 10.1504/ijass.2023.10048600
UR - https://doi.org/10.1504/ijass.2023.10048600
TI - An enterprise financial data leakage risk prediction based on ARIMA-SVM combination model.
T2 - International Journal of Applied Systemic Studies
AU - Qian Cao, Qian Cao
PY - 2023
DA - 2023/01/01
PB - Inderscience Publishers
SP - 1
IS - 1
VL - 1
SN - 1751-0589
SN - 1751-0597
ER -
Cite this
BibTex (up to 50 authors)
Copy
@article{2023_Qian Cao,
author = {Qian Cao Qian Cao},
title = {An enterprise financial data leakage risk prediction based on ARIMA-SVM combination model.},
journal = {International Journal of Applied Systemic Studies},
year = {2023},
volume = {1},
publisher = {Inderscience Publishers},
month = {jan},
url = {https://doi.org/10.1504/ijass.2023.10048600},
number = {1},
pages = {1},
doi = {10.1504/ijass.2023.10048600}
}
Cite this
MLA
Copy
Qian Cao, Qian Cao. “An enterprise financial data leakage risk prediction based on ARIMA-SVM combination model..” International Journal of Applied Systemic Studies, vol. 1, no. 1, Jan. 2023, p. 1. https://doi.org/10.1504/ijass.2023.10048600.