volume 26 issue 1 pages 109-117

The Subtraction Argument in an Infinite World

Publication typeJournal Article
Publication date2025-01-29
scimago Q2
SJR0.186
CiteScore0.5
Impact factor0.2
ISSN14372053, 18746373
Abstract

Metaphysical nihilism can be defined as the view that there might be no con-crete objects. One may argue for this view defining a finite procedure of sub-traction on a set of concrete, contingent objects juxtaposed across possible worlds, which procedure will eventually terminate in an empty possible world. Obviously, this subtraction argument is not applicable if all non-empty possible worlds contain an infinite number of objects. In this paper, I will discuss in detail the limitations of this argument and then investigate whether and how they can be relaxed.

Found 

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
0
Share
Cite this
GOST |
Cite this
GOST Copy
Garbacz P. The Subtraction Argument in an Infinite World // Metaphysica. 2025. Vol. 26. No. 1. pp. 109-117.
GOST all authors (up to 50) Copy
Garbacz P. The Subtraction Argument in an Infinite World // Metaphysica. 2025. Vol. 26. No. 1. pp. 109-117.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1515/mp-2024-0019
UR - https://www.degruyter.com/document/doi/10.1515/mp-2024-0019/html
TI - The Subtraction Argument in an Infinite World
T2 - Metaphysica
AU - Garbacz, Pawel
PY - 2025
DA - 2025/01/29
PB - Walter de Gruyter
SP - 109-117
IS - 1
VL - 26
SN - 1437-2053
SN - 1874-6373
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2025_Garbacz,
author = {Pawel Garbacz},
title = {The Subtraction Argument in an Infinite World},
journal = {Metaphysica},
year = {2025},
volume = {26},
publisher = {Walter de Gruyter},
month = {jan},
url = {https://www.degruyter.com/document/doi/10.1515/mp-2024-0019/html},
number = {1},
pages = {109--117},
doi = {10.1515/mp-2024-0019}
}
MLA
Cite this
MLA Copy
Garbacz, Pawel. “The Subtraction Argument in an Infinite World.” Metaphysica, vol. 26, no. 1, Jan. 2025, pp. 109-117. https://www.degruyter.com/document/doi/10.1515/mp-2024-0019/html.