Open Access
Open access
Reviews on Advanced Materials Science, volume 61, issue 1, pages 638-653

Corrosion resistance of 6061-T6 aluminium alloy and its feasibility of near-surface reinforcements in concrete structure

Publication typeJournal Article
Publication date2022-01-01
scimago Q2
SJR0.572
CiteScore5.1
Impact factor3.6
ISSN16065131, 16058127
Condensed Matter Physics
General Materials Science
Abstract

The durability of concrete structures is often reduced owing to the corrosion of reinforcement in an aggressive environment. Ordinary reinforcement methods, such as wrapping section steel or steel plate, are also vulnerable to corrosion. Using 6061-T6 aluminium alloy as near-surface reinforcement of the concrete structure is a feasible method. In this study, the corrosion resistance of 6061-T6 aluminium alloy bars was studied by simulating the coastal environment, atmospheric environment, and concrete internal environment with chloride solution, simulated acid rain solution, and saturated Ca(OH)2 solution. The corrosion rate of the 6061-T6 aluminium alloy in the above environments was tested using a weight loss method, and its corrosion resistance was evaluated using the metal corrosion resistance classification standard. Based on the electrochemical reaction mechanism, the polarisation properties and AC impedance spectra of steel and 6061-T6 aluminium alloy were compared, and the corrosion resistance mechanisms of steel and the 6061-T6 aluminium alloy in the above corrosive environments were obtained. The results show that the 6061-T6 aluminium alloy has better corrosion resistance than steel bars in chloride and atmospheric environments, with corrosion currents of 0.012 and 0.037 µA·cm−2, and 8-day corrosion rates of 0.051 and 0.031 mm·a−1, respectively. However, owing to the activity of the aluminium alloy, its corrosion resistance in an alkaline environment inside concrete is poor; the corrosion current is 0.22 µA·cm−2 and the 8-day corrosion rate is 16.166 mm·a−1. The research results can provide a reference for applying aluminium alloy bars as external prestressed concrete bars and near-surface steel bars.

Top-30

Journals

1
2
1
2

Publishers

1
2
3
4
5
1
2
3
4
5
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?