Advances in Civil Engineering Materials, volume 13, issue 1, pages 295-311

Effect of Loading and Carbonation on the Compressive Strength and Hydraulic Conductivity of Solidified Sand

Ghassan Aburaas 1, 2
François Duhaime 3, 4
Jean-Sébastien Dubé 1, 2
Publication typeJournal Article
Publication date2024-12-30
scimago Q2
SJR0.439
CiteScore2.7
Impact factor1.4
ISSN23791357, 21653984
Abstract

Cement-based solidification/stabilization (S/S) techniques have been widely used to produce stable forms of contaminated soils and reduce the mobility of contaminants into the environment. However, information on the long-term performances of S/S under environmental conditions (i.e., variable loading and atmospheric carbon dioxide) remains sparse. In this study, a triaxial test setup was modified to simulate environmental conditions. The permeability and compressive strength of silica sand solidified with portland cement were measured at different stages of four scenarios involving carbonation only, axial strain only, carbonation followed by axial strain, and axial strain followed by carbonation. X-ray computed tomography (CT) was used to characterize the internal structure of the samples. Permeability and compressive strength results indicate that the axial strain accelerated the damage to the S/S specimens and increased their permeability. The deterioration due to the mechanical strain decreased in the presence of carbon dioxide. Consistent changes in microstructure were observed with the CT scan. The results indicate that the influence of stressors on the void size distribution, compressive strength, and permeability is complex and characterized by interactions between the stressors.

Found 
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?