Open Access
Fixed point theory in RWC–Banach algebras
Publication type: Journal Article
Publication date: 2025-01-09
scimago Q2
wos Q1
SJR: 0.583
CiteScore: 4.0
Impact factor: 2.0
ISSN: 13925113, 23358963
Abstract
In this paper, we prove some fixed point results for the sum and the product of nonlinear continuous operators acting on an RWC–Banach algebra. Our result is formulated in terms of topological conditions on the operators. An illustrative example on an RWC–Banach algebra, which is not a WC–Banach algebra, is provided.
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
0
Total citations:
0
Cite this
GOST |
RIS |
BibTex |
MLA
Cite this
GOST
Copy
Banaś J. et al. Fixed point theory in RWC–Banach algebras // Nonlinear Analysis: Modelling and Control. 2025. Vol. 30. No. 1. pp. 108-118.
GOST all authors (up to 50)
Copy
Banaś J., Krichen B., Mefteh B., O'Regan D. Fixed point theory in RWC–Banach algebras // Nonlinear Analysis: Modelling and Control. 2025. Vol. 30. No. 1. pp. 108-118.
Cite this
RIS
Copy
TY - JOUR
DO - 10.15388/namc.2025.30.38343
UR - https://www.journals.vu.lt/nonlinear-analysis/article/view/38343
TI - Fixed point theory in RWC–Banach algebras
T2 - Nonlinear Analysis: Modelling and Control
AU - Banaś, Józef
AU - Krichen, Bilel
AU - Mefteh, Bilel
AU - O'Regan, Donal
PY - 2025
DA - 2025/01/09
PB - Vilnius University Press
SP - 108-118
IS - 1
VL - 30
SN - 1392-5113
SN - 2335-8963
ER -
Cite this
BibTex (up to 50 authors)
Copy
@article{2025_Banaś,
author = {Józef Banaś and Bilel Krichen and Bilel Mefteh and Donal O'Regan},
title = {Fixed point theory in RWC–Banach algebras},
journal = {Nonlinear Analysis: Modelling and Control},
year = {2025},
volume = {30},
publisher = {Vilnius University Press},
month = {jan},
url = {https://www.journals.vu.lt/nonlinear-analysis/article/view/38343},
number = {1},
pages = {108--118},
doi = {10.15388/namc.2025.30.38343}
}
Cite this
MLA
Copy
Banaś, Józef, et al. “Fixed point theory in RWC–Banach algebras.” Nonlinear Analysis: Modelling and Control, vol. 30, no. 1, Jan. 2025, pp. 108-118. https://www.journals.vu.lt/nonlinear-analysis/article/view/38343.