volume 95 issue 5 pages 3055-3066

DASPy: A Python Toolbox for DAS Seismology

Publication typeJournal Article
Publication date2024-07-26
scimago Q1
wos Q1
SJR1.249
CiteScore5.8
Impact factor3.2
ISSN08950695, 19382057
Abstract

Distributed acoustic sensing (DAS) has emerged as a novel technology in geophysics, owing to its high-sensing density, cost effectiveness, and adaptability to extreme environments. Nonetheless, DAS differs from traditional seismic acquisition technologies in many aspects: big data volume, equidistant sensing, measurement of axial strain (strain rate), and noise characteristics. These differences make DAS data processing challenging for new hands. To lower the bar of DAS data processing, we develop an open-source Python toolbox called DASPy, which encompasses classic seismic data processing techniques, including preprocessing, filter, spectrum analysis, and visualization, and specialized algorithms for DAS applications, including denoising, waveform decomposition, channel attribute analysis, and strain–velocity conversion. Using openly available DAS data as examples, this article makes an overview and tutorial on the eight modules in DASPy to illustrate the algorithms and practical applications. We anticipate DASPy to provide convenience for researchers unfamiliar with DAS data and help facilitate the rapid growth of DAS seismology.

Found 
Found 

Top-30

Journals

1
2
Seismological Research Letters
2 publications, 25%
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
1 publication, 12.5%
Chinese Science Bulletin (Chinese Version)
1 publication, 12.5%
IEEE Sensors Journal
1 publication, 12.5%
IEEE Access
1 publication, 12.5%
Earthquake Research Advances
1 publication, 12.5%
Engineering Geology
1 publication, 12.5%
1
2

Publishers

1
2
3
Institute of Electrical and Electronics Engineers (IEEE)
3 publications, 37.5%
Seismological Society of America (SSA)
2 publications, 25%
Elsevier
2 publications, 25%
Science in China Press
1 publication, 12.5%
1
2
3
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
8
Share
Cite this
GOST |
Cite this
GOST Copy
Hu M., Li Z. DASPy: A Python Toolbox for DAS Seismology // Seismological Research Letters. 2024. Vol. 95. No. 5. pp. 3055-3066.
GOST all authors (up to 50) Copy
Hu M., Li Z. DASPy: A Python Toolbox for DAS Seismology // Seismological Research Letters. 2024. Vol. 95. No. 5. pp. 3055-3066.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1785/0220240124
UR - https://pubs.geoscienceworld.org/srl/article/doi/10.1785/0220240124/645865/DASPy-A-Python-Toolbox-for-DAS-Seismology
TI - DASPy: A Python Toolbox for DAS Seismology
T2 - Seismological Research Letters
AU - Hu, Minzhe
AU - Li, Zefeng
PY - 2024
DA - 2024/07/26
PB - Seismological Society of America (SSA)
SP - 3055-3066
IS - 5
VL - 95
SN - 0895-0695
SN - 1938-2057
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2024_Hu,
author = {Minzhe Hu and Zefeng Li},
title = {DASPy: A Python Toolbox for DAS Seismology},
journal = {Seismological Research Letters},
year = {2024},
volume = {95},
publisher = {Seismological Society of America (SSA)},
month = {jul},
url = {https://pubs.geoscienceworld.org/srl/article/doi/10.1785/0220240124/645865/DASPy-A-Python-Toolbox-for-DAS-Seismology},
number = {5},
pages = {3055--3066},
doi = {10.1785/0220240124}
}
MLA
Cite this
MLA Copy
Hu, Minzhe, et al. “DASPy: A Python Toolbox for DAS Seismology.” Seismological Research Letters, vol. 95, no. 5, Jul. 2024, pp. 3055-3066. https://pubs.geoscienceworld.org/srl/article/doi/10.1785/0220240124/645865/DASPy-A-Python-Toolbox-for-DAS-Seismology.