Open Access
Open access
International Journal of Automation Technology, volume 6, issue 2, pages 147-153

Estimation of Dynamic Mechanical Error for Evaluation of Machine Tool Structures

Daisuke KONO
Sascha Weikert
Atsushi MATSUBARA
Kazuo Yamazaki
Publication typeJournal Article
Publication date2012-03-05
scimago Q2
SJR0.404
CiteScore2.1
Impact factor0.9
ISSN18817629, 18838022
Mechanical Engineering
Industrial and Manufacturing Engineering
Abstract

Dynamic motion errors of machine tools consist of errors in the mechanical system and the servo system. In this study, a simple method to estimate the dynamic mechanical error is proposed to evaluate machine tool structures. The dynamic mechanical error in the low frequency range is estimated from the static deformation due to the driving force, the counter force, and the inertial force. The error in a high-precision machine tool is estimated for comparison with measurements. Two calculation tools, finite element analysis and rigid multi-body simulation, are used for the estimation. Measured dynamic mechanical errors can be correctly estimated by the proposed method using finite element analysis. The tilt of driven bodies is the major reason for dynamic mechanical errors. When the reduction factor representing the structural deformation is properly determined, the rigid multi-body simulation is also an effective tool. Use of the proposed method for modification planning is demonstrated. Stiffness enhancement of the saddle was an effective modification candidate to reduce the dynamic mechanical error. If the error should be reduced to sub-micrometer level, the location of components should be modified because the Abbe offset and the offset of the driving force from the inertial force must be shortened.

Found 
Found 

Top-30

Publishers

1
2
3
4
5
1
2
3
4
5
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?