volume 95 issue 1 pages 143-182

The Hydrothermal Geochemistry of Tungsten in Granitoid Environments: I. Relative Solubilities of Ferberite and Scheelite as a Function of T, P, pH, and mNaCl

Publication typeJournal Article
Publication date2000-01-01
scimago Q1
wos Q1
SJR2.326
CiteScore10.0
Impact factor4.9
ISSN03610128, 15540774
Geochemistry and Petrology
Geophysics
Geology
Economic Geology
Abstract
The characteristics of granitoid-related tungsten deposits hosted in siliceous (carbonate-free) rocks (e.g., Panasqueira, Cligga Head, Pasto Bueno) are reviewed and the ranges of physicochemical parameters of the ore-forming fluids are summarized. The two important tungsten minerals in these deposits are wolframite and scheelite, which were deposited mostly between 200° and 500°C and 200 and 1,500 bars. The salinities of the mineralizing fluids were typically less than 15 wt percent but commonly were significantly higher (up to 55 wt %). The two predominant dissolved components are Na+ and Cl– with subordinate Ca2+, K+, and carbonate species (\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(CO_{3}^{2{\mbox{--}}}\) \end{document}/HCO3–). The contents of CO2 are highly variable, but XCO2 values typically range from 0 to 0.1. Limited pH and f O2 estimates indicate a moderately acidic fluid with oxygen fugacities between those of the QFM and HM buffers. These parameters were used to guide solubility and speciation modeling of W in hydrothermal fluids in granitoid environments. Experimentally derived thermodynamic data for scheelite, ferberite, aqueous Ca, Fe, and W species, and other required aqueous species were critically evaluated and the most reliable data were adopted. Where necessary, missing data were estimated. The resultant thermodynamic database provides a basis for solubility and speciation calculations in the system Ca-Fe-W-Cl-O-H. The simultaneous solubilities of scheelite and ferberite in NaCl-HCl-H2O solutions were calculated at temperatures from 200° to 600°C, pressures from 500 to 1,000 bars, pH from 3 to 6, and m NaCl from to 0.1 to 5.0 moles/kg H2O. The solubility model takes account of the species H+, OH–, Na+, Cl–, NaCl, HCl, NaOH, H2\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(WO_{4}^{0}\) \end{document}, \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(HWO_{4}^{{\mbox{--}}}\) \end{document}, \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(WO_{4}^{2{\mbox{--}}}\) \end{document}, Fe2+, FeCl+, \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(FeCl_{2}^{0}\) \end{document}, FeOH+, FeO, \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(HFeO_{2}^{{\mbox{--}}}\) \end{document}, Ca2+, CaCl+, \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(CaCl_{2}^{0}\) \end{document}, CaOH+, \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(NaHWO_{4}^{0}\) \end{document}, and \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(NaWO_{4}^{{\mbox{--}}}\) \end{document}. The calculations indicate the following: (1) solubilities of scheelite and/or ferberite can attain values as high as hundreds to thousands of parts per million as the tungstate species H2\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(WO_{4}^{0}\) \end{document}, \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(HWO_{4}^{{\mbox{--}}}\) \end{document}, \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(WO_{4}^{2{\mbox{--}}}\) \end{document}, \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(NaHWO_{4}^{0}\) \end{document}, and \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(NaWO_{4}^{{\mbox{--}}}\) \end{document}; thus, tungsten-chloride, -fluoride, or -carbonate complexes, or more exotic species are not required to transport sufficient W to form an ore deposit; (2) the tungsten concentration in equilibrium with scheelite and ferberite increases strongly with increasing temperature, increasing NaCl concentration and decreasing pH, but is only weakly dependent on pressure; (3) the Ca/Fe ratio of a solution in equilibrium with both scheelite and ferberite decreases strongly with increasing temperature, i.e., the field of stability of scheelite expands with increasing temperature; the implication, therefore, is that simple cooling of a solution with a constant Ca/Fe ratio cannot result in the replacement of ferberite by scheelite, and that field observations of the late-stage replacement of ferberite by scheelite require an increase in the Ca/Fe ratio concomitant with cooling; (4) the Ca/Fe ratio is relatively independent of pH; and (5) the effect of NaCl concentration on this ratio changes as a function of temperature and pressure. At less than 400°C the ratio is independent of, or decreases with, increasing NaCl concentration; at higher temperatures the ratio first decreases and then increases with increasing NaCl concentration. Experimental data on the solubility of scheelite and the Ca/Fe ratio of fluids in equilibrium with scheelite + ferberite, and which are not used in parameterizing our model, generally agree with the results of calculations performed using our thermodynamic database within an order of magnitude. However, our critical examination of available thermodynamic data reveals that significant uncertainty remains in several parameters (e.g., the solubility products of scheelite and ferberite and the association constants for alkali tungstate ion pairs). This uncertainty can only be reduced via carefully conceived, executed, controlled, and interpreted experiments, taking into account the various experimental pitfalls identified in this paper.
Found 

Top-30

Journals

20
40
60
80
100
120
Ore Geology Reviews
118 publications, 37.11%
Mineralium Deposita
20 publications, 6.29%
Minerals
17 publications, 5.35%
Geochimica et Cosmochimica Acta
15 publications, 4.72%
Chemical Geology
15 publications, 4.72%
Journal of Geochemical Exploration
9 publications, 2.83%
American Mineralogist
8 publications, 2.52%
Lithos
8 publications, 2.52%
Acta Petrologica Sinica
8 publications, 2.52%
Resource Geology
5 publications, 1.57%
Journal of Asian Earth Sciences
4 publications, 1.26%
Applied Geochemistry
4 publications, 1.26%
Gondwana Research
4 publications, 1.26%
Acta Geologica Sinica
4 publications, 1.26%
Economic Geology
3 publications, 0.94%
Earth and Planetary Science Letters
3 publications, 0.94%
Geology of Ore Deposits
3 publications, 0.94%
Geological Journal
3 publications, 0.94%
BSGF – Earth Sciences Bulletin
2 publications, 0.63%
Geochemical Transactions
2 publications, 0.63%
Journal of Solution Chemistry
2 publications, 0.63%
Acta Geochimica
2 publications, 0.63%
Scientific Reports
2 publications, 0.63%
Journal of Analytical Atomic Spectrometry
2 publications, 0.63%
International Geology Review
2 publications, 0.63%
Geofluids
2 publications, 0.63%
Encyclopedia of Earth Sciences Series
2 publications, 0.63%
Science China Earth Sciences
2 publications, 0.63%
SCIENTIA SINICA Terrae
2 publications, 0.63%
20
40
60
80
100
120

Publishers

20
40
60
80
100
120
140
160
180
200
Elsevier
192 publications, 60.38%
Springer Nature
42 publications, 13.21%
MDPI
19 publications, 5.97%
Wiley
15 publications, 4.72%
Chinese Society for Mineralogy, Petrology, and Geochemistry
8 publications, 2.52%
Walter de Gruyter
7 publications, 2.2%
Society of Economic Geologists
4 publications, 1.26%
Pleiades Publishing
4 publications, 1.26%
Taylor & Francis
4 publications, 1.26%
EDP Sciences
3 publications, 0.94%
Royal Society of Chemistry (RSC)
3 publications, 0.94%
Science in China Press
3 publications, 0.94%
Geological Society of America
2 publications, 0.63%
Hindawi Limited
2 publications, 0.63%
Mineralogical Society
1 publication, 0.31%
Frontiers Media S.A.
1 publication, 0.31%
The Geological Society of Korea
1 publication, 0.31%
American Chemical Society (ACS)
1 publication, 0.31%
Cambridge University Press
1 publication, 0.31%
The Russian Academy of Sciences
1 publication, 0.31%
Mineralogical Association of Canada
1 publication, 0.31%
Copernicus
1 publication, 0.31%
Oxford University Press
1 publication, 0.31%
Mineralogical Society of America
1 publication, 0.31%
20
40
60
80
100
120
140
160
180
200
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
318
Share
Cite this
GOST |
Cite this
GOST Copy
Wood S. A., Samson I. M. The Hydrothermal Geochemistry of Tungsten in Granitoid Environments: I. Relative Solubilities of Ferberite and Scheelite as a Function of T, P, pH, and mNaCl // Economic Geology. 2000. Vol. 95. No. 1. pp. 143-182.
GOST all authors (up to 50) Copy
Wood S. A., Samson I. M. The Hydrothermal Geochemistry of Tungsten in Granitoid Environments: I. Relative Solubilities of Ferberite and Scheelite as a Function of T, P, pH, and mNaCl // Economic Geology. 2000. Vol. 95. No. 1. pp. 143-182.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.2113/gsecongeo.95.1.143
UR - https://doi.org/10.2113/gsecongeo.95.1.143
TI - The Hydrothermal Geochemistry of Tungsten in Granitoid Environments: I. Relative Solubilities of Ferberite and Scheelite as a Function of T, P, pH, and mNaCl
T2 - Economic Geology
AU - Wood, S. A.
AU - Samson, I. M.
PY - 2000
DA - 2000/01/01
PB - Society of Economic Geologists
SP - 143-182
IS - 1
VL - 95
SN - 0361-0128
SN - 1554-0774
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2000_Wood,
author = {S. A. Wood and I. M. Samson},
title = {The Hydrothermal Geochemistry of Tungsten in Granitoid Environments: I. Relative Solubilities of Ferberite and Scheelite as a Function of T, P, pH, and mNaCl},
journal = {Economic Geology},
year = {2000},
volume = {95},
publisher = {Society of Economic Geologists},
month = {jan},
url = {https://doi.org/10.2113/gsecongeo.95.1.143},
number = {1},
pages = {143--182},
doi = {10.2113/gsecongeo.95.1.143}
}
MLA
Cite this
MLA Copy
Wood, S. A., and I. M. Samson. “The Hydrothermal Geochemistry of Tungsten in Granitoid Environments: I. Relative Solubilities of Ferberite and Scheelite as a Function of T, P, pH, and mNaCl.” Economic Geology, vol. 95, no. 1, Jan. 2000, pp. 143-182. https://doi.org/10.2113/gsecongeo.95.1.143.