SSRN Electronic Journal

Partnering Strategies for Fitness Evaluation in a Pyramidal Evolutionary Algorithm

Publication typeJournal Article
Publication date2002-01-01
SJR
CiteScore
Impact factor
ISSN15565068
Abstract
This paper combines the idea of a hierarchical distributed genetic algorithm with different interagent partnering strategies. Cascading clusters of sub-populations are built from bottom up, with higher-level sub-populations optimising larger parts of the problem. Hence higher-level subpopulations search a larger search space with a lower resolution whilst lower-level subpopulations search a smaller search space with a higher resolution. The effects of different partner selection schemes for (sub-)fitness evaluation purposes are examined for two multiple-choice optimisation problems. It is shown that random partnering strategies perform best by providing better sampling and more diversity.
Found 
Found 

Top-30

Journals

1
1

Publishers

1
1
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?