Open Access
Open access
Journal of Hydroinformatics, volume 20, issue 1, pages 246-262

A hybrid linear–nonlinear approach to predict the monthly rainfall over the Urmia Lake watershed using wavelet-SARIMAX-LSSVM conjugated model

Publication typeJournal Article
Publication date2017-08-24
scimago Q2
SJR0.573
CiteScore4.8
Impact factor2.2
ISSN14647141, 14651734
Civil and Structural Engineering
Water Science and Technology
Atmospheric Science
Geotechnical Engineering and Engineering Geology
Abstract

The present study aimed to develop a hybrid model to predict the rainfall time series of Urmia Lake watershed. For this purpose, a model based on discrete wavelet transform, ARIMAX and least squares support vector machine (LSSVM) (W-S-LSSVM) was developed. The proposed model was designed to handle linear, nonlinear and seasonality of rainfall time series. In the proposed model, time series were decomposed into sub-series (approximation (a) and details (d)). Next, the sub-series were predicted separately. In the proposed model, sub-series were fed into SARIMAX to be predicted. The residual of predicted sub-series (error) of the rainfall time series was then fed into LSSVM to predict the residual components. Then, all predicted values were aggregated to rebuild the predicted time series. In order to compare results, first a classic modeling was performed by LSSVM. Later, wavelet-based LSSVM was used to capture the peak values of rainfall. Results revealed that Daubechies 4 and decomposition level 4 (db(4,4)) led to the best outcome. Due to the performance of db(4,4), it was selected to be applied in the proposed model. Based on results, it was observed that the W-S-LSSVM's performance was improved in comparison with other models.

Found 

Top-30

Journals

1
2
3
4
5
1
2
3
4
5

Publishers

2
4
6
8
10
12
14
16
18
2
4
6
8
10
12
14
16
18
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?