volume 15 issue 7 pages 813-832

Synthesis, Antimicrobial Evaluation and Molecular Docking of Some Potential 2,6-disubstituted 1H-Benzimidazoles; Non-Classical Antifolates

Publication typeJournal Article
Publication date2019-02-07
scimago Q3
wos Q3
SJR0.380
CiteScore4.5
Impact factor2.6
ISSN15734064, 18756638, 21610444, 00766054
Drug Discovery
Abstract
Background:

Dihydrofolate reductase is one of the important enzymes for thymidylate and purine synthesis in micro-organisms. A large number of drugs have been designed to inhibit microbial DHFR but over the period of time, some drugs have developed resistance and cross reactivity towards the enzyme. Over the past few decades, benzimidazoles, triazoles and their derivatives have been grabbing the attention of the synthetic chemists for their wide gamut of antibacterial and antifungal activities targeting microbial protein DHFR.

Objective:

Our goal behind present investigation is to explore benzimidazoles class of drugs as microbial DHFR inhibitors by studying ligand-receptor binding interactions, in vitro enzyme inhibition assay and confirmation of anti-microbial activity against selected pathogenic microorganisms.

Methods:

A library containing thirty novel 2,6-disubstituted 1H-benzimidazoles was synthesized by one pot condensation of o-nitro aniline or 2,4-dinitro aniline with series of aldehydes or acetophenones using Na2S2O4 or SnCl2 respectively and reflux for 5-6hr. Structures of compounds have been confirmed by spectroscopic methods as 1H and 13C NMR, FT-IR and MS. In vitro DHFR inhibition study was performed by using Epoch microplate reader and IC50 of the test compounds was compared with Trimethoprim. In vitro antimicrobial activity was performed against selected clinical pathogens by agar disk diffusion method and MIC (µg/mL) was reported.

Results:

Moderate to good level of DHFR inhibition was observed with IC50 values in the range of 7-23 µM. Compounds B1, B19, B22, B24 and B30 expressed 1.1 to 1.4 folds more prominent DHFR inhibitory activity as compared to standard Trimethoprim. Remarkable antimicrobial activity was exhibited by B1, B19, B22, B24 and B30. Molecular docking study revealed perfect binding of test ligands with key amino acids of DHFR as Phe31, Ile94, Ile5, Asp27, Gln32 and Phe36.

Conclusion:

Nature of 1H-benzimidazole substituents at position 2 and 6 had influence over magnitude and type of molecular binding and variation in the biological activity. The present series of 1H-benzimidazoles could be considered promising broad-spectrum antimicrobial candidates that deserve in future for preclinical antimicrobial evaluation and development of newer antimicrobial agents targeting microbial DHFR.

Found 
Found 

Top-30

Journals

1
New Journal of Chemistry
1 publication, 33.33%
Molecules
1 publication, 33.33%
Russian Chemical Reviews
1 publication, 33.33%
1

Publishers

1
Royal Society of Chemistry (RSC)
1 publication, 33.33%
MDPI
1 publication, 33.33%
Autonomous Non-profit Organization Editorial Board of the journal Uspekhi Khimii
1 publication, 33.33%
1
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
3
Share
Cite this
GOST |
Cite this
GOST Copy
Harer S., Bhatia M., Kawade V. Synthesis, Antimicrobial Evaluation and Molecular Docking of Some Potential 2,6-disubstituted 1H-Benzimidazoles; Non-Classical Antifolates // Medicinal Chemistry. 2019. Vol. 15. No. 7. pp. 813-832.
GOST all authors (up to 50) Copy
Harer S., Bhatia M., Kawade V. Synthesis, Antimicrobial Evaluation and Molecular Docking of Some Potential 2,6-disubstituted 1H-Benzimidazoles; Non-Classical Antifolates // Medicinal Chemistry. 2019. Vol. 15. No. 7. pp. 813-832.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.2174/1573406415666190206231555
UR - https://doi.org/10.2174/1573406415666190206231555
TI - Synthesis, Antimicrobial Evaluation and Molecular Docking of Some Potential 2,6-disubstituted 1H-Benzimidazoles; Non-Classical Antifolates
T2 - Medicinal Chemistry
AU - Harer, Sunil
AU - Bhatia, Manish
AU - Kawade, Vikram
PY - 2019
DA - 2019/02/07
PB - Bentham Science Publishers Ltd.
SP - 813-832
IS - 7
VL - 15
PMID - 30727904
SN - 1573-4064
SN - 1875-6638
SN - 2161-0444
SN - 0076-6054
ER -
BibTex |
Cite this
BibTex (up to 50 authors) Copy
@article{2019_Harer,
author = {Sunil Harer and Manish Bhatia and Vikram Kawade},
title = {Synthesis, Antimicrobial Evaluation and Molecular Docking of Some Potential 2,6-disubstituted 1H-Benzimidazoles; Non-Classical Antifolates},
journal = {Medicinal Chemistry},
year = {2019},
volume = {15},
publisher = {Bentham Science Publishers Ltd.},
month = {feb},
url = {https://doi.org/10.2174/1573406415666190206231555},
number = {7},
pages = {813--832},
doi = {10.2174/1573406415666190206231555}
}
MLA
Cite this
MLA Copy
Harer, Sunil, et al. “Synthesis, Antimicrobial Evaluation and Molecular Docking of Some Potential 2,6-disubstituted 1H-Benzimidazoles; Non-Classical Antifolates.” Medicinal Chemistry, vol. 15, no. 7, Feb. 2019, pp. 813-832. https://doi.org/10.2174/1573406415666190206231555.