Open Access
Open access
Journal of Medical Internet Research, volume 23, issue 12, pages e34286

EpiHacks, a Process for Technologists and Health Experts to Cocreate Optimal Solutions for Disease Prevention and Control: User-Centered Design Approach

Nomita Divi 1
Mark S. Smolinski 2
1
 
Ending Pandemics, 870 Market Street, Suite 528, San Francisco, US.
2
 
Ending Pandemics, San Francisco, US.
Publication typeJournal Article
Publication date2021-11-22
scimago Q1
SJR2.020
CiteScore14.4
Impact factor5.8
ISSN14394456, 14388871
Health Informatics
Abstract
Background

Technology-based innovations that are created collaboratively by local technology specialists and health experts can optimize the addressing of priority needs for disease prevention and control. An EpiHack is a distinct, collaborative approach to developing solutions that combines the science of epidemiology with the format of a hackathon. Since 2013, a total of 12 EpiHacks have collectively brought together over 500 technology and health professionals from 29 countries.

Objective

We aimed to define the EpiHack process and summarize the impacts of the technology-based innovations that have been created through this approach.

Methods

The key components and timeline of an EpiHack were described in detail. The focus areas, outputs, and impacts of the twelve EpiHacks that were conducted between 2013 and 2021 were summarized.

Results

EpiHack solutions have served to improve surveillance for influenza, dengue, and mass gatherings, as well as laboratory sample tracking and One Health surveillance, in rural and urban communities. Several EpiHack tools were scaled during the COVID-19 pandemic to support local governments in conducting active surveillance. All tools were designed to be open source to allow for easy replication and adaptation by other governments or parties.

Conclusions

EpiHacks provide an efficient, flexible, and replicable new approach to generating relevant and timely innovations that are locally developed and owned, are scalable, and are sustainable.

Leal Neto O., Cruz O., Albuquerque J., Nacarato de Sousa M., Smolinski M., Pessoa Cesse E.Â., Libel M., Vieira de Souza W.
2020-01-28 citations by CoLab: 28 Abstract  
Background With the evolution of digital media, areas such as public health are adding new platforms to complement traditional systems of epidemiological surveillance. Participatory surveillance and digital epidemiology have become innovative tools for the construction of epidemiological landscapes with citizens’ participation, improving traditional sources of information. Strategies such as these promote the timely detection of warning signs for outbreaks and epidemics in the region. Objective This study aims to describe the participatory surveillance platform Guardians of Health, which was used in a project conducted during the 2016 Olympic and Paralympic Games in Rio de Janeiro, Brazil, and officially used by the Brazilian Ministry of Health for the monitoring of outbreaks and epidemics. Methods This is a descriptive study carried out using secondary data from Guardians of Health available in a public digital repository. Based on syndromic signals, the information subsidy for decision making by policy makers and health managers becomes more dynamic and assertive. This type of information source can be used as an early route to understand the epidemiological scenario. Results The main result of this research was demonstrating the use of the participatory surveillance platform as an additional source of information for the epidemiological surveillance performed in Brazil during a mass gathering. The platform Guardians of Health had 7848 users who generated 12,746 reports about their health status. Among these reports, the following were identified: 161 users with diarrheal syndrome, 68 users with respiratory syndrome, and 145 users with rash syndrome. Conclusions It is hoped that epidemiological surveillance professionals, researchers, managers, and workers become aware of, and allow themselves to use, new tools that improve information management for decision making and knowledge production. This way, we may follow the path for a more intelligent, efficient, and pragmatic disease control system.
Lwin M.O., Sheldenkar A., Panchapakesan C., Ng J.S., Lau J., Jayasundar K., Horathalge K., Rathnayake V.S., Crawley A.W., Wimalaratne P.
2019-06-13 citations by CoLab: 11 PDF Abstract  
Dengue is a serious problem around the globe, with 3.9 billion people at risk of the disease. Sri Lanka has recently seen unprecedented rates of dengue with 4.3 times more cases than during the same period over the previous six years. The paper discusses the development of an integrated health systems framework, aided by mobile technology, to combat and contain dengue via a health hackathon in Sri Lanka. The framework addresses the key functions of surveillance, health communication and civic engagement through innovations including digitisation of hospital forms; digital aid to Public Health Inspectors (PHIs); data consolidation and analytics; education for construction workers, GPs, and schools; and educating the general public. We present the impact of the disease burden in tropical countries, such as Sri Lanka, current technological solutions, and the process of developing the mobile application modules developed via the health hackathon.
Diwan V., Hulth A., Manickam P., Balagurusamy V.V., Agnihotri D., Parashar V., Pathak A., Sahu K., Mahadik V.K.
2018-05-22 citations by CoLab: 2 Abstract  
Objective: To develop, test and study tablet-based participatory syndromic surveillance system for common infectious disease conditions at community level in Simhashta religious mass gathering in Ujjain, India, 2016.Introduction: Infectious disease surveillance for generating early warnings to enable a prompt response during mass gatherings has long been a challenge in India 1,2 as well as in other parts of the world 3,4,5. Ujjain, Madhya Pradesh in Central India hosted one of the largest religious festival in the world called ‘Simhasth kumbh mela’ on the banks of River Kshipra, where more than 50 million attendees came for holy dip during April 22 to May 21, 2016. The attendees included pilgrims (residents and visitors), observers, officials and volunteers. We developed an android application with automated summary reports and an interactive dashboard for syndromic surveillance during the gathering.Methods: We established the participatory surveillance at all 22 sectors of the festival area, and at 20 out-patient hospitals and 12 pharmacies. We trained 55 nursing and social work graduate trainees to collect data from all these settings. The data collectors visited designated spots daily during a fixed time and collected age, gender, residence and self-reported symptoms from consenting attendees during the festival period. The application automatically added date, time and location of interview to each record and data was transmitted to a web server. We monitored the data in the interactive dashboard and prepared summary report on a periodic basis. Daily summary report of self-reported symptoms by time, place and person was shared daily evening with the festival surveillance authority.Results: Of the total 93,020 invited pilgrims, 91% participated in the surveillance. Almost 90% of those were from outside the festival city, 60% were men and 57% were aged 15 to 44 years. Almost 50% of them self-reported presence of at least one symptom. Most frequently reported symptoms were dehydration due to heat (13%), cold (13%), fever (7%) and loose stool (5%). During the festival period of over one month, surveillance data indicated increasing trends of self-reported cough and fever and declining trends of self-reported dehydration (Figure-1). The designated public health authorities for the festival did make use of the information for appropriate action. This tablet-based application was able to collect, process and visualise around 2500 records per day from the community without any data loss.Conclusions: To our knowledge, this is the first report from India documenting real-time surveillance of the community using hand-held devices during a mass gathering. Despite some implementation issues and limitations in the approach and data collected, the use of digital technology provided well-timed information avoiding tedious manual work and reduced a good amount of human resources and logistics involved in reporting symptoms with a traditional paper-based method in such a large population. In retrospect, the main utility of the surveillance output was that of giving reassurance to the officials, as no major outbreaks occurred during the event. We believe that this experience and further analyses will provide input for the establishment and use of such a surveillance system during mass gatherings. The team of investigators propose improving the methods and tools for future use.
Yano T., Phornwisetsirikun S., Susumpow P., Visrutaratna S., Chanachai K., Phetra P., Chaisowwong W., Trakarnsirinont P., Hemwan P., Kaewpinta B., Singhapreecha C., Kreausukon K., Charoenpanyanet A., Robert C.S., Robert L., et. al.
2018-03-21 citations by CoLab: 13 Abstract  
Aiming for early disease detection and prompt outbreak control, digital technology with a participatory One Health approach was used to create a novel disease surveillance system called Participatory One Health Disease Detection (PODD). PODD is a community-owned surveillance system that collects data from volunteer reporters; identifies disease outbreak automatically; and notifies the local governments (LGs), surrounding villages, and relevant authorities. This system provides a direct and immediate benefit to the communities by empowering them to protect themselves.The objective of this study was to determine the effectiveness of the PODD system for the rapid detection and control of disease outbreaks.The system was piloted in 74 LGs in Chiang Mai, Thailand, with the participation of 296 volunteer reporters. The volunteers and LGs were key participants in the piloting of the PODD system. Volunteers monitored animal and human diseases, as well as environmental problems, in their communities and reported these events via the PODD mobile phone app. LGs were responsible for outbreak control and provided support to the volunteers. Outcome mapping was used to evaluate the performance of the LGs and volunteers.LGs were categorized into one of the 3 groups based on performance: A (good), B (fair), and C (poor), with the majority (46%,34/74) categorized into group B. Volunteers were similarly categorized into 4 performance groups (A-D), again with group A showing the best performance, with the majority categorized into groups B and C. After 16 months of implementation, 1029 abnormal events had been reported and confirmed to be true reports. The majority of abnormal reports were sick or dead animals (404/1029, 39.26%), followed by zoonoses and other human diseases (129/1029, 12.54%). Many potentially devastating animal disease outbreaks were detected and successfully controlled, including 26 chicken high mortality outbreaks, 4 cattle disease outbreaks, 3 pig disease outbreaks, and 3 fish disease outbreaks. In all cases, the communities and animal authorities cooperated to apply community contingency plans to control these outbreaks, and community volunteers continued to monitor the abnormal events for 3 weeks after each outbreak was controlled.By design, PODD initially targeted only animal diseases that potentially could emerge into human pandemics (eg, avian influenza) and then, in response to community needs, expanded to cover human health and environmental health issues.
Karimuribo E.D., Mutagahywa E., Sindato C., Mboera L., Mwabukusi M., Kariuki Njenga M., Teesdale S., Olsen J., Rweyemamu M.
2017-12-18 citations by CoLab: 72 Abstract  
Background We describe the development and initial achievements of a participatory disease surveillance system that relies on mobile technology to promote Community Level One Health Security (CLOHS) in Africa. Objective The objective of this system, Enhancing Community-Based Disease Outbreak Detection and Response in East and Southern Africa (DODRES), is to empower community-based human and animal health reporters with training and information and communication technology (ICT)–based solutions to contribute to disease detection and response, thereby complementing strategies to improve the efficiency of infectious disease surveillance at national, regional, and global levels. In this study, we refer to techno-health as the application of ICT-based solutions to enhance early detection, timely reporting, and prompt response to health events in human and animal populations. Methods An EpiHack, involving human and animal health experts as well as ICT programmers, was held in Tanzania in 2014 to identify major challenges facing early detection, timely reporting, and prompt response to disease events. This was followed by a project inception workshop in 2015, which brought together key stakeholders, including policy makers and community representatives, to refine the objectives and implementation plan of the DODRES project. The digital ICT tools were developed and packaged together as the AfyaData app to support One Health disease surveillance. Community health reporters (CHRs) and officials from animal and human health sectors in Morogoro and Ngorongoro districts in Tanzania were trained to use the AfyaData app. The AfyaData supports near- to real-time data collection and submission at both community and health facility levels as well as the provision of feedback to reporters. The functionality of the One Health Knowledge Repository (OHKR) app has been integrated into the AfyaData app to provide health information on case definitions of diseases of humans and animals and to synthesize advice that can be transmitted to CHRs with next step response activities or interventions. Additionally, a WhatsApp social group was made to serve as a platform to sustain interactions between community members, local government officials, and DODRES team members. Results Within the first 5 months (August-December 2016) of AfyaData tool deployment, a total of 1915 clinical cases in livestock (1816) and humans (99) were reported in Morogoro (83) and Ngorongoro (1832) districts. Conclusions These initial results suggest that the DODRES community-level model creates an opportunity for One Health engagement of people in their own communities in the detection of infectious human and animal disease threats. Participatory approaches supported by digital and mobile technologies should be promoted for early disease detection, timely reporting, and prompt response at the community, national, regional, and global levels.
Woolhouse M.E., Gowtage-Sequeria S.
Emerging Infectious Diseases scimago Q1 wos Q1 Open Access
2012-01-30 citations by CoLab: 1093 Abstract  
An updated literature survey identified 1,407 recognized species of human pathogen, 58% of which are zoonotic. Of the total, 177 are regarded as emerging or reemerging. Zoonotic pathogens are twice as likely to be in this category as are nonzoonotic pathogens. Emerging and reemerging pathogens are not strongly associated with particular types of nonhuman hosts, but they are most likely to have the broadest host ranges. Emerging and reemerging zoonoses are associated with a wide range of drivers, but changes in land use and agriculture and demographic and societal changes are most commonly cited. However, although zoonotic pathogens do represent the most likely source of emerging and reemerging infectious disease, only a small minority have proved capable of causing major epidemics in the human population.
Chen C., Yeh Y., Chan T., Wu Y.
Learning Health Systems scimago Q1 wos Q2 Open Access
2025-01-15 citations by CoLab: 0 PDF Abstract  
AbstractIntroductionThe acute care system faced significant challenges in managing healthcare emergencies due to a lack of coordination between emergency services and logistical support. This disorganization undermined collaboration and response efficiency.MethodsTaiwan's Presidential Hackathon introduced an innovative approach to improving the trauma system by integrating digital pipeline science through public–private partnerships (PPPs). This initiative specifically addressed inefficiencies and complexities in the acute care ecosystem, brought to light by the catastrophic 2014 gas explosion in Kaohsiung City.ResultsThe hackathon led to the development of a unified digital platform for emergency data management. This platform significantly enhanced communication, data sharing, and coordination across healthcare sectors, culminating in the implementation of a digital pre‐hospital emergency care system across multiple administrative regions.ConclusionOur experience demonstrated the effectiveness of leveraging digital technologies, PPPs, and the hackathon model to revolutionize emergency healthcare management and response systems through cross‐sector collaboration.
Melo C.L., Mageste L.R., Guaraldo L., Paula D.P., Wakimoto M.D.
2024-11-18 citations by CoLab: 0 Abstract  
Background The development of technology and information systems has led to important changes in public health surveillance. Objective This scoping review aimed to assess the available evidence and gather information about the use of digital tools for arbovirus (dengue virus [DENV], zika virus [ZIKV], and chikungunya virus [CHIKV]) surveillance. Methods The databases used were MEDLINE, SCIELO, LILACS, SCOPUS, Web of Science, and EMBASE. The inclusion criterion was defined as studies that described the use of digital tools in arbovirus surveillance. The exclusion criteria were defined as follows: letters, editorials, reviews, case reports, series of cases, descriptive epidemiological studies, laboratory and vaccine studies, economic evaluation studies, and studies that did not clearly describe the use of digital tools in surveillance. Results were evaluated in the following steps: monitoring of outbreaks or epidemics, tracking of cases, identification of rumors, decision-making by health agencies, communication (cases and bulletins), and dissemination of information to society). Results Of the 2227 studies retrieved based on screening by title, abstract, and full-text reading, 68 (3%) studies were included. The most frequent digital tools used in arbovirus surveillance were apps (n=24, 35%) and Twitter, currently called X (n=22, 32%). These were mostly used to support the traditional surveillance system, strengthening aspects such as information timeliness, acceptability, flexibility, monitoring of outbreaks or epidemics, detection and tracking of cases, and simplicity. The use of apps to disseminate information to society (P=.02), communicate (cases and bulletins; P=.01), and simplicity (P=.03) and the use of Twitter to identify rumors (P=.008) were statistically relevant in evaluating scores. This scoping review had some limitations related to the choice of DENV, ZIKV, and CHIKV as arboviruses, due to their clinical and epidemiological importance. Conclusions In the contemporary scenario, it is no longer possible to ignore the use of web data or social media as a complementary strategy to health surveillance. However, it is important that efforts be combined to develop new methods that can ensure the quality of information and the adoption of systematic measures to maintain the integrity and reliability of digital tools’ data, considering ethical aspects.
Mudzengi D.L., Chomutare H., Nagudi J., Ntshiqa T., Davis J.L., Charalambous S., Velen K.
JMIR mHealth and uHealth scimago Q1 wos Q1 Open Access
2024-08-26 citations by CoLab: 0 Abstract  
Background Mobile health (mHealth) technologies are increasingly used in contact tracing and case finding, enhancing and replacing traditional methods for managing infectious diseases such as Ebola, tuberculosis, COVID-19, and HIV. However, the variations in their development approaches, implementation scopes, and effectiveness introduce uncertainty regarding their potential to improve public health outcomes. Objective We conducted this systematic review to explore how mHealth technologies are developed, implemented, and evaluated. We aimed to deepen our understanding of mHealth’s role in contact tracing, enhancing both the implementation and overall health outcomes. Methods We searched and reviewed studies conducted in Africa focusing on tuberculosis, Ebola, HIV, and COVID-19 and published between 1990 and 2023 using the PubMed, Scopus, Web of Science, and Google Scholar databases. We followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines to review, synthesize, and report the findings from articles that met our criteria. Results We identified 11,943 articles, but only 19 (0.16%) met our criteria, revealing a large gap in technologies specifically aimed at case finding and contact tracing of infectious diseases. These technologies addressed a broad spectrum of diseases, with a predominant focus on Ebola and tuberculosis. The type of technologies used ranged from mobile data collection platforms and smartphone apps to advanced geographic information systems (GISs) and bidirectional communication systems. Technologies deployed in programmatic settings, often developed using design thinking frameworks, were backed by significant funding and often deployed at a large scale but frequently lacked rigorous evaluations. In contrast, technologies used in research settings, although providing more detailed evaluation of both technical performance and health outcomes, were constrained by scale and insufficient funding. These challenges not only prevented these technologies from being tested on a wider scale but also hindered their ability to provide actionable and generalizable insights that could inform public health policies effectively. Conclusions Overall, this review underscored a need for organized development approaches and comprehensive evaluations. A significant gap exists between the expansive deployment of mHealth technologies in programmatic settings, which are typically well funded and rigorously developed, and the more robust evaluations necessary to ascertain their effectiveness. Future research should consider integrating the robust evaluations often found in research settings with the scale and developmental rigor of programmatic implementations. By embedding advanced research methodologies within programmatic frameworks at the design thinking stage, mHealth technologies can potentially become technically viable and effectively meet specific contact tracing health outcomes to inform policy effectively.
Morris R., Wang S.
2024-04-02 citations by CoLab: 5 Abstract  
To detect and respond to emerging diseases more effectively, an integrated surveillance strategy needs to be applied to both human and animal health. Current programs in Asian countries operate separately for the two sectors and are principally concerned with detection of events that represent a short-term disease threat. It is not realistic to either invest only in efforts to detect emerging diseases, or to rely solely on event-based surveillance. A comprehensive strategy is needed, concurrently investigating and managing endemic zoonoses, studying evolving diseases which change their character and importance due to influences such as demographic and climatic change, and enhancing understanding of factors which are likely to influence the emergence of new pathogens. This requires utilisation of additional investigational tools that have become available in recent years but are not yet being used to full effect. As yet there is no fully formed blueprint that can be applied in Asian countries. Hence a three-step pathway is proposed to move towards the goal of comprehensive one health disease surveillance and response.

Top-30

Journals

1
1

Publishers

1
2
1
2
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?