Open Access
Open access
COMPUTATIONAL MATHEMATICS AND INFORMATION TECHNOLOGIES, volume 8, issue 2, pages 33-44

Mathematical Modelling of Catastrophic Surge and Seiche Events in the Azov Sea Using Remote Sensing Data

E. A. Protsenko 1
N. D. Panasenko 2
S. V. Protsenko 2
Publication typeJournal Article
Publication date2024-07-04
SJR
CiteScore
Impact factor
ISSN25878999
Abstract

Introduction. This work is devoted to the mathematical modelling of extreme sea level fluctuations in the Azov Sea using remote sensing data. The aim of the study is to develop and apply a mathematical model that allows more accurate prediction of surge and seiche events caused by extreme wind conditions. The relevance of the work is due to the need to improve the forecasts of hydrodynamic processes in shallow water bodies (such as the Azov Sea), where such phenomena can have significant economic and ecological consequences. The goal of this work is to develop and apply a mathematical model for predicting extreme sea level fluctuations in the Azov Sea caused by wind conditions.Materials and Methods. The study is based on the analysis of remote sensing data and observations of wind speed and direction over the Azov Sea. The primary method used is mathematical modelling, which includes solving the system of shallow water hydrodynamics equations. Wind condition data were collected from November 20 to 25, 2019, during which catastrophic sea level fluctuations were observed. The model considers the components of water flow velocity, water density, hydrodynamic pressure, gravitational acceleration, and turbulence exchange coefficients.Results. The modelling showed that prolonged easterly winds with speeds up to 22 m/s led to significant surge and seiche fluctuations in sea level. The maximum amplitudes of fluctuations were recorded in the central part of the Taganrog Bay, where the wind direction and speed remained almost constant throughout the observation period. Data from various platforms located in different parts of the Azov Sea confirmed a significant decrease in water level in the northeast and an increase in the southwest.Discussion and Conclusions. The study results confirm that using mathematical models in combination with remote sensing data allows more accurate predictions of extreme sea level fluctuations. This is important for developing measures to prevent and mitigate the consequences of surge and seiche events in coastal areas. In the future, it is necessary to improve models by including additional factors such as climate change and anthropogenic impact on the Azov Sea ecosystem.

Found 

Top-30

Journals

1
1

Publishers

1
1
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?