volume 4, issue 1, pages 1-26

A Systematic Review of Machine Learning Algorithms in Cyberbullying Detection: Future Directions and Challenges

Publication typeJournal Article
Publication date2021-06-01
Abstract

Social media networks are becoming an essential part of life for most of the world’s population. Detecting cyberbullying using machine learning and natural language processing algorithms is getting the attention of researchers. There is a growing need for automatic detection and mitigation of cyberbullying events on social media. In this study, research directions and the theoretical foundation in this area are investigated. A systematic review of the current state-of-the-art research in this area is conducted. A framework considering all possible actors in the cyberbullying event must be designed, including various aspects of cyberbullying and its effect on the participating actors. Furthermore, future directions and challenges are also discussed.

Found 

Top-30

Journals

1
2
1
2

Publishers

1
2
3
4
5
6
7
1
2
3
4
5
6
7
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Found error?