Open Access
Open access
Frontiers in Bioengineering and Biotechnology, volume 11

Fluorescence quenching-based immunological probe for ticagrelor monitoring

Shengshuo Zhang 1, 2
Yueqing Cheng 1
Yujie Gao 1
Yujie Zou 1
Weiling Xiao 3
Tianyi Li 4
Mei Li 1
Bowen Yu 3
Jinhua Dong 2, 5
Show full list: 9 authors
1
 
School of Life Science and Technology, China
2
 
School of Rehabilitation Sciences and Engineering, China
3
 
School of Basic Medical Sciences, China
4
 
School of Stomatology, China
5
 
International Research Frontiers Initiative, Japan
Publication typeJournal Article
Publication date2023-11-28
scimago Q1
SJR0.893
CiteScore8.3
Impact factor4.3
ISSN22964185
Biotechnology
Bioengineering
Histology
Biomedical Engineering
Abstract

Introduction: Ticagrelor is extensively utilized for the treatment of acute coronary syndromes (ACS), but its platelet aggregation inhibitory effects can potentially result in tissue bleeding, posing a serious risk to patients’ lives.

Methods: In this study, we developed highly sensitive full length anti-ticagrelor Quenchbodies (Q-bodies) for fast monitoring of ticagrelor both in solution and serum for the first time. Ticagrelor coupled with N- hydroxysuccinimide (Ticagrelor-NHS) ester was also designed and synthesized for interaction and biological activity detection.

Results: Both ATTO-labeled MEDI2452 (2452A) Q-body and TAMRA-labeled IgG 152 (152T) Q-body demonstrated efficient detection of ticagrelor and its active metabolite (TAM). The 2452A Q-body exhibited a broader detection range, while the 152T Q-body displayed a lower limit of detection (LOD). Under physiological conditions (Ticagrelor:TAM, 3:1), the concentration of ticagrelor was further measured, yielding LOD values of 4.65 pg/mL and 2.75 pg/mL for the two Q-bodies, with half-maximal effect concentrations of 8.15 ng/mL and 3.0 ng/mL, respectively.

Discussion: Compared with traditional liquid chromatography-mass spectrometry (LC-MS) methods, anti-ticagrelor Q-bodies have higher sensitivity and detection speed. It enabled the completion of analysis within 3 min, facilitating rapid preoperative detection of blood drug concentration in ACS to determine the feasibility of surgery and mitigate the risk of intraoperative and postoperative hemorrhage. The swift detection of ticagrelor holds promise for enhancing individualized drug administration, preventing adverse reactions, and providing preoperative guidance.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?