Open Access
Open access

Improved sea surface salinity data for the Arctic Ocean derived from SMAP satellite data using machine learning approaches

Тип публикацииJournal Article
Дата публикации2024-03-25
scimago Q1
wos Q1
БС1
SJR0.931
CiteScore5.8
Impact factor3.0
ISSN22967745
Water Science and Technology
Aquatic Science
Oceanography
Global and Planetary Change
Ocean Engineering
Краткое описание

Salinity is among the key climate characteristics of the World Ocean. During the last 15 years, sea surface salinity (SSS) is measured using satellite passive microwave sensors. Standard retrieving SSS algorithms from remote sensing data were developed and verified for the most typical temperature and salinity values of the World Ocean. However, they have far lower accuracy for the Arctic Ocean, especially its shelf areas, which are influenced by large river runoff and have low typical temperature and salinity values. In this study, an improved algorithm has been developed to retrieve SSS in the Arctic Ocean during ice-free season, based on Soil Moisture Active Passive (SMAP) mission data, and using machine learning approaches. Extensive database of in situ salinity measurements in the Russian Arctic seas collected during multiple field surveys is applied to train and validate the machine learning models. The error in SSS retrieval of the developed algorithm compared to the standard algorithm reduced from 3.15 to 2.15 psu, and the correlation with in situ data increased from 0.82 to 0.90. The obtained daily SSS fields are important to improve accurate assessment of spatial and temporal variability of large river plumes in the Arctic Ocean.

Найдено 
Найдено 

Топ-30

Журналы

1
2
Frontiers in Marine Science
2 публикации, 66.67%
Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo Universiteta, Fizika)
1 публикация, 33.33%
1
2

Издатели

1
2
Frontiers Media S.A.
2 публикации, 66.67%
Allerton Press
1 публикация, 33.33%
1
2
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
3
Поделиться
Цитировать
ГОСТ |
Цитировать
Savin A. et al. Improved sea surface salinity data for the Arctic Ocean derived from SMAP satellite data using machine learning approaches // Frontiers in Marine Science. 2024. Vol. 11.
ГОСТ со всеми авторами (до 50) Скопировать
Savin A., Krinitskiy M., Osadchiev A. Improved sea surface salinity data for the Arctic Ocean derived from SMAP satellite data using machine learning approaches // Frontiers in Marine Science. 2024. Vol. 11.
RIS |
Цитировать
TY - JOUR
DO - 10.3389/fmars.2024.1358882
UR - https://www.frontiersin.org/articles/10.3389/fmars.2024.1358882/full
TI - Improved sea surface salinity data for the Arctic Ocean derived from SMAP satellite data using machine learning approaches
T2 - Frontiers in Marine Science
AU - Savin, Alexander
AU - Krinitskiy, Mikhail
AU - Osadchiev, Alexander
PY - 2024
DA - 2024/03/25
PB - Frontiers Media S.A.
VL - 11
SN - 2296-7745
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2024_Savin,
author = {Alexander Savin and Mikhail Krinitskiy and Alexander Osadchiev},
title = {Improved sea surface salinity data for the Arctic Ocean derived from SMAP satellite data using machine learning approaches},
journal = {Frontiers in Marine Science},
year = {2024},
volume = {11},
publisher = {Frontiers Media S.A.},
month = {mar},
url = {https://www.frontiersin.org/articles/10.3389/fmars.2024.1358882/full},
doi = {10.3389/fmars.2024.1358882}
}