Open Access
Open access

On the optimal cathode catalyst layer for polymer electrolyte fuel cells: Bimodal pore size distributions with functionalized microstructures

Pablo A. García-Salaberri 1
Arturo Sánchez-Ramos 1
Prodip K. Das 2
1
 
Department of Thermal and Fluids Engineering, Spain
2
 
School of Engineering, United Kingdom
Publication typeJournal Article
Publication date2022-12-06
scimago Q2
wos Q3
SJR0.553
CiteScore5.0
Impact factor2.4
ISSN2296598X
Energy Engineering and Power Technology
Fuel Technology
Renewable Energy, Sustainability and the Environment
Economics and Econometrics
Abstract

A high advancement has been achieved in the design of proton exchange membrane fuel cells (PEMFCs) since the development of thin-film catalyst layers (CLs). However, the progress has slowed down in the last decade due to the difficulty in reducing Pt loading, especially at the cathode side, while preserving high stack performance. This situation poses a barrier to the widespread commercialization of fuel cell vehicles, where high performance and durability are needed at a reduced cost. Exploring the technology limits is necessary to adopt successful strategies that can allow the development of improved PEMFCs for the automotive industry. In this work, a numerical model of an optimized cathode CL is presented, which combines a multiscale formulation of mass and charge transport at the nanoscale (10nm) and at the layer scale (1μm). The effect of exterior oxygen and ohmic transport resistances are incorporated through mixed boundary conditions. The optimized CL features a vertically aligned geometry of equally spaced ionomer pillars, which are covered by a thin nanoporous electron-conductive shell. The interior surface of cylindrical nanopores is catalyzed with a Pt skin (atomic thickness), so that triple phase points are provided by liquid water. The results show the need to develop thin CLs with bimodal pore size distributions and functionalized microstructures to maximize the utilization of water-filled nanopores in which oxygen transport is facilitated compared with ionomer thin films. Proton transport across the CL must be assisted by low-tortuosity ionomer regions, which provide highways for proton transport. Large secondary pores are beneficial to facilitate oxygen distribution and water removal. Ultimate targets set by the U.S. Department of Energy and other governments can be achieved by an optimization of the CL microstructure with a high electrochemical surface area, a reduction of the oxygen transport resistance from the channel to the CL, and an increase of the catalyst activity (or maintaining a similar activity with Pt alloys). Carbon-free supports (e.g., polymer or metal) are preferred to avoid corrosion and enlarge durability.

Found 
Found 

Top-30

Journals

1
2
Journal of Power Sources
2 publications, 14.29%
Materials
1 publication, 7.14%
Heliyon
1 publication, 7.14%
Green Chemistry
1 publication, 7.14%
International Journal of Green Energy
1 publication, 7.14%
ChemElectroChem
1 publication, 7.14%
Energies
1 publication, 7.14%
ECS Advances
1 publication, 7.14%
International Journal of Heat and Mass Transfer
1 publication, 7.14%
Russian Chemical Reviews
1 publication, 7.14%
Fuel
1 publication, 7.14%
International Journal of Hydrogen Energy
1 publication, 7.14%
Carbon Energy
1 publication, 7.14%
1
2

Publishers

1
2
3
4
5
6
Elsevier
6 publications, 42.86%
MDPI
2 publications, 14.29%
Wiley
2 publications, 14.29%
Royal Society of Chemistry (RSC)
1 publication, 7.14%
Taylor & Francis
1 publication, 7.14%
The Electrochemical Society
1 publication, 7.14%
Autonomous Non-profit Organization Editorial Board of the journal Uspekhi Khimii
1 publication, 7.14%
1
2
3
4
5
6
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
14
Share
Cite this
GOST |
Cite this
GOST Copy
García-Salaberri P. A., Sánchez-Ramos A., Das P. K. On the optimal cathode catalyst layer for polymer electrolyte fuel cells: Bimodal pore size distributions with functionalized microstructures // Frontiers in Energy Research. 2022. Vol. 10.
GOST all authors (up to 50) Copy
García-Salaberri P. A., Sánchez-Ramos A., Das P. K. On the optimal cathode catalyst layer for polymer electrolyte fuel cells: Bimodal pore size distributions with functionalized microstructures // Frontiers in Energy Research. 2022. Vol. 10.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.3389/fenrg.2022.1058913
UR - https://doi.org/10.3389/fenrg.2022.1058913
TI - On the optimal cathode catalyst layer for polymer electrolyte fuel cells: Bimodal pore size distributions with functionalized microstructures
T2 - Frontiers in Energy Research
AU - García-Salaberri, Pablo A.
AU - Sánchez-Ramos, Arturo
AU - Das, Prodip K.
PY - 2022
DA - 2022/12/06
PB - Frontiers Media S.A.
VL - 10
SN - 2296-598X
ER -
BibTex
Cite this
BibTex (up to 50 authors) Copy
@article{2022_García-Salaberri,
author = {Pablo A. García-Salaberri and Arturo Sánchez-Ramos and Prodip K. Das},
title = {On the optimal cathode catalyst layer for polymer electrolyte fuel cells: Bimodal pore size distributions with functionalized microstructures},
journal = {Frontiers in Energy Research},
year = {2022},
volume = {10},
publisher = {Frontiers Media S.A.},
month = {dec},
url = {https://doi.org/10.3389/fenrg.2022.1058913},
doi = {10.3389/fenrg.2022.1058913}
}