Open Access
Open access

Polyolefin ductile-brittle transition temperature predictions by machine learning

Florian Kiehas 1, 2
Martin Reiter 1, 2
Juan Pablo Torres 3, 4
Michael Jerabek 3, 4
Zoltán Major 1, 2
1
 
Institute of Polymer Product Engineering, Austria
3
 
Borealis Polyolefine GmbH, Austria
4
 
Borealis Polyolefine GmbH, Linz, Austria
Тип публикацииJournal Article
Дата публикации2024-01-25
scimago Q2
wos Q3
БС1
SJR0.544
CiteScore5.6
Impact factor2.9
ISSN22968016
Materials Science (miscellaneous)
Краткое описание

Polymers show a transition from ductile-to brittle fracture behavior at decreasing temperatures. Consequently, the material toughness has to be determined across wide temperature ranges in order to determine the Ductile-Brittle Transition Temperature This usually necessitates multiple impact experiments. We present a machine-learning methodology for the prediction of DBTTs from single Instrumented Puncture Tests Our dataset consists of 7,587 IPTs that comprise 181 Polyethylene and Polypropylene compounds. Based on a combination of feature engineering and Principal Component Analysis, relevant information of instrumentation signals is extracted. The transformed data is explored by unsupervised machine learning algorithms and is used as input for Random Forest Regressors to predict DBTTs. The proposed methodology allows for fast screening of new materials. Additionally, it offers estimations of DBTTs without thermal specimen conditioning. Considering only IPTs tested at room temperature, predictions on the test set hold an average error of 5.3°C when compared to the experimentally determined DBTTs.

Найдено 
Найдено 

Топ-30

Журналы

1
Russian Chemical Reviews
1 публикация, 50%
Macromolecular Rapid Communications
1 публикация, 50%
1

Издатели

1
Autonomous Non-profit Organization Editorial Board of the journal Uspekhi Khimii
1 публикация, 50%
Wiley
1 публикация, 50%
1
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
2
Поделиться
Цитировать
ГОСТ |
Цитировать
Kiehas F. et al. Polyolefin ductile-brittle transition temperature predictions by machine learning // Frontiers in Materials. 2024. Vol. 10.
ГОСТ со всеми авторами (до 50) Скопировать
Kiehas F., Reiter M., Torres J. P., Jerabek M., Major Z. Polyolefin ductile-brittle transition temperature predictions by machine learning // Frontiers in Materials. 2024. Vol. 10.
RIS |
Цитировать
TY - JOUR
DO - 10.3389/fmats.2023.1275640
UR - https://www.frontiersin.org/articles/10.3389/fmats.2023.1275640/full
TI - Polyolefin ductile-brittle transition temperature predictions by machine learning
T2 - Frontiers in Materials
AU - Kiehas, Florian
AU - Reiter, Martin
AU - Torres, Juan Pablo
AU - Jerabek, Michael
AU - Major, Zoltán
PY - 2024
DA - 2024/01/25
PB - Frontiers Media S.A.
VL - 10
SN - 2296-8016
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2024_Kiehas,
author = {Florian Kiehas and Martin Reiter and Juan Pablo Torres and Michael Jerabek and Zoltán Major},
title = {Polyolefin ductile-brittle transition temperature predictions by machine learning},
journal = {Frontiers in Materials},
year = {2024},
volume = {10},
publisher = {Frontiers Media S.A.},
month = {jan},
url = {https://www.frontiersin.org/articles/10.3389/fmats.2023.1275640/full},
doi = {10.3389/fmats.2023.1275640}
}