Open Access
Open access

Convolutional Neural Networks Can Predict Retinal Differentiation in Retinal Organoids

Тип публикацииJournal Article
Дата публикации2020-07-03
scimago Q1
wos Q2
БС1
SJR1.488
CiteScore8.3
Impact factor4.0
ISSN16625102
Cellular and Molecular Neuroscience
Краткое описание
We have developed a deep learning-based computer algorithm to recognize and predict retinal differentiation in stem cell-derived organoids based on bright-field imaging. The three-dimensional “organoid” approach for the differentiation of pluripotent stem cells (PSC) into retinal and other neural tissues has become a major in vitro strategy to recapitulate development. We decided to develop a universal, robust, and non-invasive method to assess retinal differentiation that would not require chemical probes or reporter gene expression. We hypothesized that basic-contrast bright-field (BF) images contain sufficient information on tissue specification, and it is possible to extract this data using convolutional neural networks (CNNs). Retina-specific Rx-green fluorescent protein mouse embryonic reporter stem cells have been used for all of the differentiation experiments in this work. The BF images of organoids have been taken on day 5 and fluorescent on day 9. To train the CNN, we utilized a transfer learning approach: ImageNet pre-trained ResNet50v2, VGG19, Xception, and DenseNet121 CNNs had been trained on labeled BF images of the organoids, divided into two categories (retina and non-retina), based on the fluorescent reporter gene expression. The best-performing classifier with ResNet50v2 architecture showed a receiver operating characteristic-area under the curve score of 0.91 on a test dataset. A comparison of the best-performing CNN with the human-based classifier showed that the CNN algorithm performs better than the expert in predicting organoid fate (84% vs. 67 ± 6% of correct predictions, respectively), confirming our original hypothesis. Overall, we have demonstrated that the computer algorithm can successfully recognize and predict retinal differentiation in organoids before the onset of reporter gene expression. This is the first demonstration of CNN’s ability to classify stem cell-derived tissue in vitro.
Найдено 
Найдено 

Топ-30

Журналы

1
2
Bio-Design and Manufacturing
2 публикации, 3.45%
Scientific Reports
2 публикации, 3.45%
Bioactive Materials
2 публикации, 3.45%
Methods in Molecular Biology
2 публикации, 3.45%
Development (Cambridge)
1 публикация, 1.72%
International Journal of Molecular Sciences
1 публикация, 1.72%
Frontiers in Cellular Neuroscience
1 публикация, 1.72%
Frontiers in Molecular Biosciences
1 публикация, 1.72%
Frontiers in Bioengineering and Biotechnology
1 публикация, 1.72%
Journal of the Korean Physical Society
1 публикация, 1.72%
Archives of Toxicology
1 публикация, 1.72%
Seminars in Cell and Developmental Biology
1 публикация, 1.72%
PLoS ONE
1 публикация, 1.72%
Developmental Biology
1 публикация, 1.72%
SLAS Discovery
1 публикация, 1.72%
Developmental Neurobiology
1 публикация, 1.72%
Advanced Science
1 публикация, 1.72%
Lab on a Chip
1 публикация, 1.72%
Kidney Research and Clinical Practice
1 публикация, 1.72%
Frontiers in Immunology
1 публикация, 1.72%
Tissue Engineering and Regenerative Medicine
1 публикация, 1.72%
Proceedings of the National Academy of Sciences of the United States of America
1 публикация, 1.72%
Current Stem Cell Reports
1 публикация, 1.72%
Medicine in Novel Technology and Devices
1 публикация, 1.72%
Computers in Biology and Medicine
1 публикация, 1.72%
Bioengineering & Translational Medicine
1 публикация, 1.72%
Advanced Drug Delivery Reviews
1 публикация, 1.72%
Progress in Retinal and Eye Research
1 публикация, 1.72%
Prostate
1 публикация, 1.72%
1
2

Издатели

2
4
6
8
10
12
14
16
Elsevier
16 публикаций, 27.59%
Springer Nature
12 публикаций, 20.69%
Frontiers Media S.A.
5 публикаций, 8.62%
Cold Spring Harbor Laboratory
5 публикаций, 8.62%
Wiley
4 публикации, 6.9%
MDPI
3 публикации, 5.17%
Institute of Electrical and Electronics Engineers (IEEE)
2 публикации, 3.45%
The Company of Biologists
1 публикация, 1.72%
Public Library of Science (PLoS)
1 публикация, 1.72%
SAGE
1 публикация, 1.72%
Royal Society of Chemistry (RSC)
1 публикация, 1.72%
The Korean Society of Nephrology
1 публикация, 1.72%
Proceedings of the National Academy of Sciences (PNAS)
1 публикация, 1.72%
American Chemical Society (ACS)
1 публикация, 1.72%
Oxford University Press
1 публикация, 1.72%
Eco-Vector LLC
1 публикация, 1.72%
Tsinghua University Press
1 публикация, 1.72%
Ovid Technologies (Wolters Kluwer Health)
1 публикация, 1.72%
2
4
6
8
10
12
14
16
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
58
Поделиться
Цитировать
ГОСТ |
Цитировать
Kegeles E. et al. Convolutional Neural Networks Can Predict Retinal Differentiation in Retinal Organoids // Frontiers in Cellular Neuroscience. 2020. Vol. 14.
ГОСТ со всеми авторами (до 50) Скопировать
Kegeles E., Naumov A., Karpulevich E. A., Volchkov P., Baranov P. Convolutional Neural Networks Can Predict Retinal Differentiation in Retinal Organoids // Frontiers in Cellular Neuroscience. 2020. Vol. 14.
RIS |
Цитировать
TY - JOUR
DO - 10.3389/fncel.2020.00171
UR - https://doi.org/10.3389/fncel.2020.00171
TI - Convolutional Neural Networks Can Predict Retinal Differentiation in Retinal Organoids
T2 - Frontiers in Cellular Neuroscience
AU - Kegeles, Evgenii
AU - Naumov, Anton
AU - Karpulevich, Evgeny A
AU - Volchkov, Pavel
AU - Baranov, Petr
PY - 2020
DA - 2020/07/03
PB - Frontiers Media S.A.
VL - 14
PMID - 32719585
SN - 1662-5102
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2020_Kegeles,
author = {Evgenii Kegeles and Anton Naumov and Evgeny A Karpulevich and Pavel Volchkov and Petr Baranov},
title = {Convolutional Neural Networks Can Predict Retinal Differentiation in Retinal Organoids},
journal = {Frontiers in Cellular Neuroscience},
year = {2020},
volume = {14},
publisher = {Frontiers Media S.A.},
month = {jul},
url = {https://doi.org/10.3389/fncel.2020.00171},
doi = {10.3389/fncel.2020.00171}
}