Temporal-Sequential Learning With a Brain-Inspired Spiking Neural Network and Its Application to Musical Memory

Тип публикацииJournal Article
Дата публикации2020-07-02
scimago Q3
wos Q2
БС2
SJR0.622
CiteScore5.0
Impact factor2.3
ISSN16625188
Cellular and Molecular Neuroscience
Neuroscience (miscellaneous)
Краткое описание
Sequence learning is an inherent cognitive function of the brain. However, how to represent and memorize sequential information are still fundamental issues in existed models that have not been solved well. To overcome these problems, this paper introduces a spiking neural network inspired by psychological and neurobiological findings. The proposed model have three characteristics: 1) The individual building block of the simulated areas is a neural functional minicolumn which is composed of biologically plausible neurons. 2) Both excitatory and inhibitory connections between neurons are included. The connections between neurons in the same layer are inhibitory and the ones between neurons from different layers are excitatory. These connections are modulated dynamically using the Spike Timing-Dependent Plasticity(STDP) learning rule. 3) The mechanism of temporal sequential patterns is introduced, which is important in sequence learning but ignored by traditional algorithms. To validate our model, we take the music memory to verify. Pitches and rhythms correspond to spacial and temporal patterns respectively. The results have shown that the model can store the input melodies and recall them with high accuracy. Besides, the model can remember the whole melody only given an episode.
Найдено 
Найдено 

Топ-30

Журналы

1
Frontiers in Systems Neuroscience
1 публикация, 5%
Frontiers in Neuroscience
1 публикация, 5%
Frontiers in Psychology
1 публикация, 5%
Artificial Intelligence Review
1 публикация, 5%
Communications in Computer and Information Science
1 публикация, 5%
Patterns
1 публикация, 5%
Neural Networks
1 публикация, 5%
Lecture Notes in Networks and Systems
1 публикация, 5%
IEEE Transactions on Neural Networks and Learning Systems
1 публикация, 5%
Multimedia Tools and Applications
1 публикация, 5%
Expert Systems with Applications
1 публикация, 5%
Mesoscience and Nanotechnology
1 публикация, 5%
Studies in Computational Intelligence
1 публикация, 5%
Scientific Reports
1 публикация, 5%
Neural Computation
1 публикация, 5%
Neurocomputing
1 публикация, 5%
1

Издатели

1
2
3
4
5
6
7
Springer Nature
7 публикаций, 35%
Elsevier
6 публикаций, 30%
Frontiers Media S.A.
3 публикации, 15%
Institute of Electrical and Electronics Engineers (IEEE)
2 публикации, 10%
Treatise
1 публикация, 5%
MIT Press
1 публикация, 5%
1
2
3
4
5
6
7
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
20
Поделиться
Цитировать
ГОСТ |
Цитировать
Liang Qian et al. Temporal-Sequential Learning With a Brain-Inspired Spiking Neural Network and Its Application to Musical Memory // Frontiers in Computational Neuroscience. 2020. Vol. 14.
ГОСТ со всеми авторами (до 50) Скопировать
Liang Qian, Zeng Yi, Xu B. Temporal-Sequential Learning With a Brain-Inspired Spiking Neural Network and Its Application to Musical Memory // Frontiers in Computational Neuroscience. 2020. Vol. 14.
RIS |
Цитировать
TY - JOUR
DO - 10.3389/fncom.2020.00051
UR - https://doi.org/10.3389/fncom.2020.00051
TI - Temporal-Sequential Learning With a Brain-Inspired Spiking Neural Network and Its Application to Musical Memory
T2 - Frontiers in Computational Neuroscience
AU - Liang Qian
AU - Zeng Yi
AU - Xu, Bo
PY - 2020
DA - 2020/07/02
PB - Frontiers Media S.A.
VL - 14
PMID - 32714173
SN - 1662-5188
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2020_Liang Qian,
author = {Liang Qian and Zeng Yi and Bo Xu},
title = {Temporal-Sequential Learning With a Brain-Inspired Spiking Neural Network and Its Application to Musical Memory},
journal = {Frontiers in Computational Neuroscience},
year = {2020},
volume = {14},
publisher = {Frontiers Media S.A.},
month = {jul},
url = {https://doi.org/10.3389/fncom.2020.00051},
doi = {10.3389/fncom.2020.00051}
}