Deep Learning Prediction of Exhaust Mass Flow and CO Emissions for Underground Mining Application
Diesel engines power much of the heavy-duty equipment used in underground mines, where exhaust emissions pose acute environmental and occupational health challenges. However, predicting the amount of air required to dilute these emissions is difficult because exhaust mass flow and pollutant concentrations vary nonlinearly with multiple operating parameters. We apply deep learning to predict the total exhaust mass flow and carbon monoxide (CO) concentration of a six-cylinder gas–diesel (dual-fuel) turbocharged KAMAZ 910.12-450 engine under controlled operating conditions. We trained artificial neural networks on the preprocessed experimental dataset to capture nonlinear relationships between engine inputs and exhaust responses. Model interpretation with Shapley additive explanations (SHAP) identifies torque, speed, and boost pressure as dominant drivers of exhaust mass flow, and catalyst pressure, EGR rate, and boost pressure as primary contributors to CO concentration. In addition, symbolic regression yields an interpretable analytical expression for exhaust mass flow, facilitating interpretation and potential integration into control. The results indicate that deep learning enables accurate and interpretable prediction of key exhaust parameters in dual-fuel engines, supporting emission assessment and mitigation strategies relevant to underground mining operations. These findings support future integration with ventilation models and real-time monitoring frameworks.