Open Access
Open access
том 14 издание 11 страницы 2029

Assessment of UAV-Based Deep Learning for Corn Crop Analysis in Midwest Brazil

J. Martins 1
Alberto Yoshiriki Hisano Higuti 1
Aiesca Pellegrin 2
Raquel Soares Juliano 2
Adriana Mello de Araújo 2
Luiz Alberto Pellegrin 2
Veraldo Liesenberg 3
A. P. Ramos 4, 5
Wesley Nunes Gonçalves 1
Diego André Santana 6
Bruno Brandoli Machado 1, 7
José Marcato Junior 1
2
 
Embrapa Pantanal, Rua 21 de Setembro, 1880, Corumbá, MS, 79320-900, Brazil
4
 
Environment and Regional Development Program, University of Western São Paulo, Rodovia Raposo Tavares, km 572, Bairro Limoeiro 19067-175, SP, Brazil
5
 
Agronomy Program, University of Western São Paulo, Rodovia Raposo Tavares, km 572, Bairro Limoeiro 19067-175, SP, Brazil
7
 
Computer science department, Universidade Católica Dom Bosco, Av. Tamandaré, 6000, Campo Grande 79117-010, MS, Brazil
Тип публикацииJournal Article
Дата публикации2024-11-11
scimago Q1
wos Q1
БС1
SJR0.704
CiteScore6.3
Impact factor3.6
ISSN20770472
Краткое описание

Crop segmentation, the process of identifying and delineating agricultural fields or specific crops within an image, plays a crucial role in precision agriculture, enabling farmers and public managers to make informed decisions regarding crop health, yield estimation, and resource allocation in Midwest Brazil. The crops (corn) in this region are being damaged by wild pigs and other diseases. For the quantification of corn fields, this paper applies novel computer-vision techniques and a new dataset of corn imagery composed of 1416 256 × 256 images and corresponding labels. We flew nine drone missions and classified wild pig damage in ten orthomosaics in different stages of growth using semi-automatic digitizing and deep-learning techniques. The period of crop-development analysis will range from early sprouting to the start of the drying phase. The objective of segmentation is to transform or simplify the representation of an image, making it more meaningful and easier to interpret. For the objective class, corn achieved an IoU of 77.92%, and for background 83.25%, using DeepLabV3+ architecture, 78.81% for corn, and 83.73% for background using SegFormer architecture. For the objective class, the accuracy metrics were achieved at 86.88% and for background 91.41% using DeepLabV3+, 88.14% for the objective, and 91.15% for background using SegFormer.

Найдено 
Найдено 

Топ-30

Журналы

1
2
Agriculture (Switzerland)
2 публикации, 66.67%
Applied Sciences (Switzerland)
1 публикация, 33.33%
1
2

Издатели

1
2
3
MDPI
3 публикации, 100%
1
2
3
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
3
Поделиться
Цитировать
ГОСТ |
Цитировать
Martins J. et al. Assessment of UAV-Based Deep Learning for Corn Crop Analysis in Midwest Brazil // Agriculture (Switzerland). 2024. Vol. 14. No. 11. p. 2029.
ГОСТ со всеми авторами (до 50) Скопировать
Martins J., Hisano Higuti A. Y., Pellegrin A., Juliano R. S., Araújo A. M. D., Pellegrin L. A., Liesenberg V., Ramos A. P., Gonçalves W. N., Santana D. A., Machado B. B., Marcato Junior J. Assessment of UAV-Based Deep Learning for Corn Crop Analysis in Midwest Brazil // Agriculture (Switzerland). 2024. Vol. 14. No. 11. p. 2029.
RIS |
Цитировать
TY - JOUR
DO - 10.3390/agriculture14112029
UR - https://www.mdpi.com/2077-0472/14/11/2029
TI - Assessment of UAV-Based Deep Learning for Corn Crop Analysis in Midwest Brazil
T2 - Agriculture (Switzerland)
AU - Martins, J.
AU - Hisano Higuti, Alberto Yoshiriki
AU - Pellegrin, Aiesca
AU - Juliano, Raquel Soares
AU - Araújo, Adriana Mello de
AU - Pellegrin, Luiz Alberto
AU - Liesenberg, Veraldo
AU - Ramos, A. P.
AU - Gonçalves, Wesley Nunes
AU - Santana, Diego André
AU - Machado, Bruno Brandoli
AU - Marcato Junior, José
PY - 2024
DA - 2024/11/11
PB - MDPI
SP - 2029
IS - 11
VL - 14
SN - 2077-0472
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2024_Martins,
author = {J. Martins and Alberto Yoshiriki Hisano Higuti and Aiesca Pellegrin and Raquel Soares Juliano and Adriana Mello de Araújo and Luiz Alberto Pellegrin and Veraldo Liesenberg and A. P. Ramos and Wesley Nunes Gonçalves and Diego André Santana and Bruno Brandoli Machado and José Marcato Junior},
title = {Assessment of UAV-Based Deep Learning for Corn Crop Analysis in Midwest Brazil},
journal = {Agriculture (Switzerland)},
year = {2024},
volume = {14},
publisher = {MDPI},
month = {nov},
url = {https://www.mdpi.com/2077-0472/14/11/2029},
number = {11},
pages = {2029},
doi = {10.3390/agriculture14112029}
}
MLA
Цитировать
Martins, J., et al. “Assessment of UAV-Based Deep Learning for Corn Crop Analysis in Midwest Brazil.” Agriculture (Switzerland), vol. 14, no. 11, Nov. 2024, p. 2029. https://www.mdpi.com/2077-0472/14/11/2029.