Open Access
Open access
том 7 издание 9 страницы 285

Hybrid Digital Twin for Phytotron Microclimate Control: Integrating Physics-Based Modeling and IoT Sensor Networks

Тип публикацииJournal Article
Дата публикации2025-09-02
scimago Q1
wos Q2
БС1
SJR0.559
CiteScore4.7
Impact factor3.0
ISSN26247402
Краткое описание

Integration of IoT and predictive modeling is critical for optimizing microclimate management in urban-agglomeration vertical farming. In this study, we present a hybrid digital twin approach that combines a physical microclimate model with a distributed IoT monitoring system to simulate and control the phytotron environment. A set of heat- and mass-balance equations governing the dynamics of temperature, humidity, and transpiration was implemented and parameterized using a genetic algorithm (GA)—an evolutionary optimization method—with real-time data collected over three intervals (72 h, 90 h, and 110 h) from LoRaWAN sensors (temperature, humidity, CO2) and Wi-Fi-connected power meters managed by Home Assistant. The optimized model achieved mean temperature deviations ≤ 0.1 °C, relative humidity errors ≤ 2%, and overall energy consumption accuracy of 99.5% compared to measured values. The digital twin reliably tracked daily climate fluctuations and system energy use, confirming the accuracy of the hybrid approach. These results demonstrate that the proposed framework effectively integrates theoretical models with IoT-derived data to deliver precise environmental control and energy-use optimization in vertical farming, while also laying the groundwork for scalable digital twins in controlled-environment agriculture.

Найдено 
Найдено 

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
1
Поделиться
Цитировать
ГОСТ |
Цитировать
Bukhtoyarov V. et al. Hybrid Digital Twin for Phytotron Microclimate Control: Integrating Physics-Based Modeling and IoT Sensor Networks // AgriEngineering. 2025. Vol. 7. No. 9. p. 285.
ГОСТ со всеми авторами (до 50) Скопировать
Bukhtoyarov V., Nekrasov I. S., Timofeenko I. A., Gorodov A. A., Kartushinskii S. A., Trofimov Y. V., Lishik S. I. Hybrid Digital Twin for Phytotron Microclimate Control: Integrating Physics-Based Modeling and IoT Sensor Networks // AgriEngineering. 2025. Vol. 7. No. 9. p. 285.
RIS |
Цитировать
TY - JOUR
DO - 10.3390/agriengineering7090285
UR - https://www.mdpi.com/2624-7402/7/9/285
TI - Hybrid Digital Twin for Phytotron Microclimate Control: Integrating Physics-Based Modeling and IoT Sensor Networks
T2 - AgriEngineering
AU - Bukhtoyarov, Vladimir
AU - Nekrasov, Ivan S.
AU - Timofeenko, I. A.
AU - Gorodov, Alexey A.
AU - Kartushinskii, Stanislav A.
AU - Trofimov, Yury V.
AU - Lishik, Sergey I.
PY - 2025
DA - 2025/09/02
PB - MDPI
SP - 285
IS - 9
VL - 7
SN - 2624-7402
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2025_Bukhtoyarov,
author = {Vladimir Bukhtoyarov and Ivan S. Nekrasov and I. A. Timofeenko and Alexey A. Gorodov and Stanislav A. Kartushinskii and Yury V. Trofimov and Sergey I. Lishik},
title = {Hybrid Digital Twin for Phytotron Microclimate Control: Integrating Physics-Based Modeling and IoT Sensor Networks},
journal = {AgriEngineering},
year = {2025},
volume = {7},
publisher = {MDPI},
month = {sep},
url = {https://www.mdpi.com/2624-7402/7/9/285},
number = {9},
pages = {285},
doi = {10.3390/agriengineering7090285}
}
MLA
Цитировать
Bukhtoyarov, Vladimir, et al. “Hybrid Digital Twin for Phytotron Microclimate Control: Integrating Physics-Based Modeling and IoT Sensor Networks.” AgriEngineering, vol. 7, no. 9, Sep. 2025, p. 285. https://www.mdpi.com/2624-7402/7/9/285.