Open Access
Open access
том 5 издание 4 страницы 2829-2851

Seeing Beyond Noise: Improving Cryptocurrency Forecasting with Linear Bias Correction

Sibtain Syed 1
Muhammad Talha Syed 2
Arshad Iqbal 1, 3
Naveed Ahmad 4
Mohammed Ali Alshara 4
Тип публикацииJournal Article
Дата публикации2024-12-08
AI
scimago Q2
wos Q1
SJR0.868
CiteScore6.9
Impact factor5.0
ISSN26732688
Краткое описание

Cryptocurrency is recognized as a leading digital currency by its peer-to-peer transfer capabilities and secure features. Accurately forecasting cryptocurrency price trends holds substantial significance for investors and traders, as they inform critical decisions regarding the acquisition, divestment, or retention of cryptocurrencies, guided by expectations of value, risk assessment, and potential returns. This study also aims to identify a resourceful technique to efficiently forecast prices of cryptocurrencies such as Bitcoin (BTC), Binance (BNB), Ripple (XRP), and Tether (USDT) using optimal data-driven models (LSTM, GRU, and BiLSTM models) using bias correction. The proposed methodology includes collecting cryptocurrency data and precious metal data from Coindesk and BullionVault, respectively, and then finding the optimal model input combination for each cryptocurrency by lag adjustment and correlating feature selection. Hyperparameter tuning was performed by trial-and-error technique, and an early stopping function was applied to minimize time and space complexity. Bias correction (BC) is applied to model-forecasted price trends to reduce errors in evaluation and to enhance accuracy by adjusting model outputs to reduce prediction bias, providing a refined alternative to traditional unadjusted deep learning methods. GRU-BC outperformed other models in forecasting Bitcoin (with MAE 25.291, RMSE 31.266, MAPE 2.999) and USDT (with MAE 0.0006, RMSE 0.0012, MAPE 0.0622) price trends, while BiLSTM-BC was superior in predicting XRP (with MAE 0.0129, RMSE 0.0171, MAPE 2.9013) and BNB (with MAE 2.2759, RMSE 2.8357, MAPE 1.9785) market price flow.

Найдено 
Найдено 

Топ-30

Журналы

1
Quality and Quantity
1 публикация, 25%
Systems
1 публикация, 25%
FinTech
1 публикация, 25%
1

Издатели

1
2
Springer Nature
2 публикации, 50%
MDPI
2 публикации, 50%
1
2
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
4
Поделиться
Цитировать
ГОСТ |
Цитировать
Syed S. et al. Seeing Beyond Noise: Improving Cryptocurrency Forecasting with Linear Bias Correction // AI. 2024. Vol. 5. No. 4. pp. 2829-2851.
ГОСТ со всеми авторами (до 50) Скопировать
Syed S., Syed M. T., Iqbal A., Ahmad N., Alshara M. A. Seeing Beyond Noise: Improving Cryptocurrency Forecasting with Linear Bias Correction // AI. 2024. Vol. 5. No. 4. pp. 2829-2851.
RIS |
Цитировать
TY - JOUR
DO - 10.3390/ai5040136
UR - https://www.mdpi.com/2673-2688/5/4/136
TI - Seeing Beyond Noise: Improving Cryptocurrency Forecasting with Linear Bias Correction
T2 - AI
AU - Syed, Sibtain
AU - Syed, Muhammad Talha
AU - Iqbal, Arshad
AU - Ahmad, Naveed
AU - Alshara, Mohammed Ali
PY - 2024
DA - 2024/12/08
PB - MDPI
SP - 2829-2851
IS - 4
VL - 5
SN - 2673-2688
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2024_Syed,
author = {Sibtain Syed and Muhammad Talha Syed and Arshad Iqbal and Naveed Ahmad and Mohammed Ali Alshara},
title = {Seeing Beyond Noise: Improving Cryptocurrency Forecasting with Linear Bias Correction},
journal = {AI},
year = {2024},
volume = {5},
publisher = {MDPI},
month = {dec},
url = {https://www.mdpi.com/2673-2688/5/4/136},
number = {4},
pages = {2829--2851},
doi = {10.3390/ai5040136}
}
MLA
Цитировать
Syed, Sibtain, et al. “Seeing Beyond Noise: Improving Cryptocurrency Forecasting with Linear Bias Correction.” AI, vol. 5, no. 4, Dec. 2024, pp. 2829-2851. https://www.mdpi.com/2673-2688/5/4/136.