Open Access
Open access
Applied Sciences (Switzerland), volume 15, issue 2, pages 674

Breaking New Ground in Monocular Depth Estimation with Dynamic Iterative Refinement and Scale Consistency

Publication typeJournal Article
Publication date2025-01-11
scimago Q2
wos Q2
SJR0.508
CiteScore5.3
Impact factor2.5
ISSN20763417
Abstract

Monocular depth estimation (MDE) is a critical task in computer vision with applications in autonomous driving, robotics, and augmented reality. However, predicting depth from a single image poses significant challenges, especially in dynamic scenes where moving objects introduce scale ambiguity and inaccuracies. In this paper, we propose the Dynamic Iterative Monocular Depth Estimation (DI-MDE) framework, which integrates an iterative refinement process with a novel scale-alignment module to address these issues. Our approach combines elastic depth bins that adjust dynamically based on uncertainty estimates with a scale-alignment mechanism to ensure consistency between static and dynamic regions. Leveraging self-supervised learning, DI-MDE does not require ground truth depth labels, making it scalable and applicable to real-world environments. Experimental results on standard datasets such as SUN RGB-D and KITTI demonstrate that our method achieves state-of-the-art performance, significantly improving depth prediction accuracy in dynamic scenes. This work contributes a robust and efficient solution to the challenges of monocular depth estimation, offering advancements in both depth refinement and scale consistency.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?
Profiles