Open Access
Open access
Biomolecules, volume 13, issue 2, pages 377

Opposing Roles of FACT for Euchromatin and Heterochromatin in Yeast

Publication typeJournal Article
Publication date2023-02-16
Journal: Biomolecules
scimago Q1
SJR1.179
CiteScore9.4
Impact factor4.8
ISSN2218273X
Biochemistry
Molecular Biology
Abstract

DNA is stored in the nucleus of a cell in a folded state; however, only the necessary genetic information is extracted from the required group of genes. The key to extracting genetic information is chromatin ambivalence. Depending on the chromosomal region, chromatin is characterized into low-density “euchromatin” and high-density “heterochromatin”, with various factors being involved in its regulation. Here, we focus on chromatin regulation and gene expression by the yeast FACT complex, which functions in both euchromatin and heterochromatin. FACT is known as a histone H2A/H2B chaperone and was initially reported as an elongation factor associated with RNA polymerase II. In budding yeast, FACT activates promoter chromatin by interacting with the transcriptional activators SBF/MBF via the regulation of G1/S cell cycle genes. In fission yeast, FACT plays an important role in the formation of higher-order chromatin structures and transcriptional repression by binding to Swi6, an HP1 family protein, at heterochromatin. This FACT property, which refers to the alternate chromatin-regulation depending on the binding partner, is an interesting phenomenon. Further analysis of nucleosome regulation within heterochromatin is expected in future studies.

Top-30

Journals

1
1

Publishers

1
1
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?