Open Access
Open access
том 11 издание 2 страницы 439

Early Prediction of Dementia Using Feature Extraction Battery (FEB) and Optimized Support Vector Machine (SVM) for Classification

Тип публикацииJournal Article
Дата публикации2023-02-02
scimago Q1
wos Q1
БС2
SJR1.114
CiteScore6.8
Impact factor3.9
ISSN22279059
General Biochemistry, Genetics and Molecular Biology
Medicine (miscellaneous)
Краткое описание

Dementia is a cognitive disorder that mainly targets older adults. At present, dementia has no cure or prevention available. Scientists found that dementia symptoms might emerge as early as ten years before the onset of real disease. As a result, machine learning (ML) scientists developed various techniques for the early prediction of dementia using dementia symptoms. However, these methods have fundamental limitations, such as low accuracy and bias in machine learning (ML) models. To resolve the issue of bias in the proposed ML model, we deployed the adaptive synthetic sampling (ADASYN) technique, and to improve accuracy, we have proposed novel feature extraction techniques, namely, feature extraction battery (FEB) and optimized support vector machine (SVM) using radical basis function (rbf) for the classification of the disease. The hyperparameters of SVM are calibrated by employing the grid search approach. It is evident from the experimental results that the newly pr oposed model (FEB-SVM) improves the dementia prediction accuracy of the conventional SVM by 6%. The proposed model (FEB-SVM) obtained 98.28% accuracy on training data and a testing accuracy of 93.92%. Along with accuracy, the proposed model obtained a precision of 91.80%, recall of 86.59, F1-score of 89.12%, and Matthew’s correlation coefficient (MCC) of 0.4987. Moreover, the newly proposed model (FEB-SVM) outperforms the 12 state-of-the-art ML models that the researchers have recently presented for dementia prediction.

Найдено 
Найдено 

Топ-30

Журналы

1
2
IEEE Access
2 публикации, 6.45%
Applied Sciences (Switzerland)
1 публикация, 3.23%
Agriculture (Switzerland)
1 публикация, 3.23%
International Journal of Systems Assurance Engineering and Management
1 публикация, 3.23%
Information (Switzerland)
1 публикация, 3.23%
Frontiers in Bioengineering and Biotechnology
1 публикация, 3.23%
Artificial Intelligence Review
1 публикация, 3.23%
Biomedicines
1 публикация, 3.23%
Applied neuropsychology. Adult
1 публикация, 3.23%
Journal of Energy Storage
1 публикация, 3.23%
Healthcare Analytics
1 публикация, 3.23%
Scientific Reports
1 публикация, 3.23%
International Journal of Imaging Systems and Technology
1 публикация, 3.23%
Brain Behavior & Immunity - Health
1 публикация, 3.23%
Life
1 публикация, 3.23%
European Journal of Agronomy
1 публикация, 3.23%
Procedia Computer Science
1 публикация, 3.23%
Big Data and Cognitive Computing
1 публикация, 3.23%
BioEssays
1 публикация, 3.23%
Frontiers in Medicine
1 публикация, 3.23%
JMIR Medical Informatics
1 публикация, 3.23%
Smart Agricultural Technology
1 публикация, 3.23%
Intelligence-Based Medicine
1 публикация, 3.23%
1
2

Издатели

1
2
3
4
5
6
7
8
Institute of Electrical and Electronics Engineers (IEEE)
8 публикаций, 25.81%
Elsevier
7 публикаций, 22.58%
MDPI
6 публикаций, 19.35%
Springer Nature
4 публикации, 12.9%
Frontiers Media S.A.
2 публикации, 6.45%
Wiley
2 публикации, 6.45%
Taylor & Francis
1 публикация, 3.23%
JMIR Publications
1 публикация, 3.23%
1
2
3
4
5
6
7
8
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
31
Поделиться
Цитировать
ГОСТ |
Цитировать
Javeed A. et al. Early Prediction of Dementia Using Feature Extraction Battery (FEB) and Optimized Support Vector Machine (SVM) for Classification // Biomedicines. 2023. Vol. 11. No. 2. p. 439.
ГОСТ со всеми авторами (до 50) Скопировать
Javeed A., Dallora A. L., Berglund J. S., Idrisoglu A., Ali L., Rauf H. T., Anderberg P. Early Prediction of Dementia Using Feature Extraction Battery (FEB) and Optimized Support Vector Machine (SVM) for Classification // Biomedicines. 2023. Vol. 11. No. 2. p. 439.
RIS |
Цитировать
TY - JOUR
DO - 10.3390/biomedicines11020439
UR - https://doi.org/10.3390/biomedicines11020439
TI - Early Prediction of Dementia Using Feature Extraction Battery (FEB) and Optimized Support Vector Machine (SVM) for Classification
T2 - Biomedicines
AU - Javeed, Ashir
AU - Dallora, Ana Luiza
AU - Berglund, Johan Sanmartin
AU - Idrisoglu, Alper
AU - Ali, Liaqat
AU - Rauf, Hafiz Tayyab
AU - Anderberg, Peter
PY - 2023
DA - 2023/02/02
PB - MDPI
SP - 439
IS - 2
VL - 11
PMID - 36830975
SN - 2227-9059
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2023_Javeed,
author = {Ashir Javeed and Ana Luiza Dallora and Johan Sanmartin Berglund and Alper Idrisoglu and Liaqat Ali and Hafiz Tayyab Rauf and Peter Anderberg},
title = {Early Prediction of Dementia Using Feature Extraction Battery (FEB) and Optimized Support Vector Machine (SVM) for Classification},
journal = {Biomedicines},
year = {2023},
volume = {11},
publisher = {MDPI},
month = {feb},
url = {https://doi.org/10.3390/biomedicines11020439},
number = {2},
pages = {439},
doi = {10.3390/biomedicines11020439}
}
MLA
Цитировать
Javeed, Ashir, et al. “Early Prediction of Dementia Using Feature Extraction Battery (FEB) and Optimized Support Vector Machine (SVM) for Classification.” Biomedicines, vol. 11, no. 2, Feb. 2023, p. 439. https://doi.org/10.3390/biomedicines11020439.