Electrocatalytic Pathways and Efficiency of Cuprous Oxide (Cu2O) Surfaces in CO2 Electrochemical Reduction (CO2ER) to Methanol: A Computational Approach
Carbon dioxide (CO2) can be electrochemically, thermally, and photochemically reduced into valuable products such as carbon monoxide (CO), formic acid (HCOOH), methane (CH4), and methanol (CH3OH), contributing to carbon footprint mitigation. Extensive research has focused on catalysts, combining experimental approaches with computational quantum mechanics to elucidate reaction mechanisms. Although computational studies face challenges due to a lack of accurate approximations, they offer valuable insights and assist in selecting suitable catalysts for specific applications. This study investigates the electrocatalytic pathways of CO2 reduction on cuprous oxide (Cu2O) catalysts, utilizing the computational hydrogen electrode (CHE) model based on density functional theory (DFT). The electrocatalytic performance of flat Cu2O (100) and hexagonal Cu2O (111) surfaces was systematically analysed, using the standard hydrogen electrode (SHE) as a reference. Key parameters, including free energy changes (ΔG), adsorption energies (Eads), reaction mechanisms, and pathways for various intermediates were estimated. The results showed that CO2 was reduced to CO(g) on both Cu2O surfaces at low energies. However, methanol (CH3OH) production was observed preferentially on Cu2O (111) at ΔG = −1.61 eV, whereas formic acid (HCOOH) and formaldehyde (HCOH) formation were thermodynamically unfavourable at interfacial sites. The CO2-to-methanol conversion on Cu2O (100) exhibited a total ΔG of −3.38 eV, indicating lower feasibility compared to Cu2O (111) with ΔG = −5.51 eV. These findings, which are entirely based on a computational approach, highlight the superior catalytic efficiency of Cu2O (111) for methanol synthesis. This approach also holds the potential for assessing the catalytic performance of other transition metal oxides (e.g., nickel oxide, cobalt oxide, zinc oxide, and molybdenum oxide) and their modified forms through doping or alloying with various elements.