Open Access
Open access
Coatings, volume 13, issue 11, pages 1867

Influence of Electron Beam Treatment on Structure and Phase Composition of TiB2–Ag Coating Deposited by Electrical Explosion Spraying

Publication typeJournal Article
Publication date2023-10-31
Journal: Coatings
scimago Q2
SJR0.493
CiteScore5.0
Impact factor2.9
ISSN20796412
Materials Chemistry
Surfaces, Coatings and Films
Surfaces and Interfaces
Abstract

Due to many factors, the electrical explosion spraying process is not stable, which directly causes unstable coating quality and structure. Electron beam treatment may be used to improve the surface and modified structure of coatings sprayed by electrical explosions. In this study, a new TiB2–Ag metal matrix composite coating was deposited by electrical explosion spraying and modified by electron beam treatment. The prepared coatings were characterized by surface macro- and microanalysis, XDR, cross-section SEM, and TEM. The composition of the spray-coating phase differs from sample to sample. The electron beam treatment normalized the phase composition. Ag TiB2 B2O became the main phase in the modified coating. Increasing the pulse energy density and duration leads to a reduction in the low-melting Ag phase and the formation of copper contact phases due to heating and melting of the copper substrate by excess electron beam energy. The coating structure consists of a silver matrix and TiB2 inclusions. The electron beam treatment did not affect the structure; however, the microstructure of the coating transformed into a cellular crystallization structure. The silver matrix nanostructure was transformed into a nanocrystalline structure with an average crystal size ranging from tens to hundreds of nanometers.

Found 

Top-30

Journals

1
1

Publishers

1
1
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?