Secure Hybrid Deep Learning for MRI-Based Brain Tumor Detection in Smart Medical IoT Systems
Background/Objectives: Brain tumors are among the most aggressive diseases, significantly contributing to human mortality. Typically, the classification of brain tumors is performed through a biopsy, which is often delayed until brain surgery is necessary. An automated image classification technique is crucial for accelerating diagnosis, reducing the need for invasive procedures and minimizing the risk of manual diagnostic errors being made by radiologists. Additionally, the security of sensitive MRI images remains a major concern, with robust encryption methods required to protect patient data from unauthorized access and breaches in Medical Internet of Things (MIoT) systems. Methods: This study proposes a secure and automated MRI image classification system that integrates chaotic and Arnold encryption techniques with hybrid deep learning models using VGG16 and a deep neural network (DNN). The methodology ensures MRI image confidentiality while enabling the accurate classification of brain tumors and not compromising performance. Results: The proposed system demonstrated a high classification performance under both encryption scenarios. For chaotic encryption, it achieved an accuracy of 93.75%, precision of 94.38%, recall of 93.75%, and an F-score of 93.67%. For Arnold encryption, the model attained an accuracy of 94.1%, precision of 96.9%, recall of 94.1%, and an F-score of 96.6%. These results indicate that encrypted images can still be effectively classified, ensuring both security and diagnostic accuracy. Conclusions: The proposed hybrid deep learning approach provides a secure, accurate, and efficient solution for brain tumor detection in MIoT-based healthcare applications. By encrypting MRI images before classification, the system ensures patient data confidentiality while maintaining high diagnostic performance. This approach can empower radiologists and healthcare professionals worldwide, enabling early and secure brain tumor diagnosis without the need for invasive procedures.