Open Access
Open access
Energies, volume 16, issue 15, pages 5657

DSVM-Based Model-Free Predictive Current Control of an Induction Motor

Md Asif Hussain 1
Ananda Shankar Hati 1
Prasun Chakrabarti 2
Bui Thanh Hung 3
Vadim Bolshev 4, 5
Vladimir Panchenko 6
Publication typeJournal Article
Publication date2023-07-27
Journal: Energies
scimago Q1
SJR0.651
CiteScore6.2
Impact factor3
ISSN19961073
Electrical and Electronic Engineering
Energy Engineering and Power Technology
Renewable Energy, Sustainability and the Environment
Building and Construction
Control and Optimization
Engineering (miscellaneous)
Energy (miscellaneous)
Abstract

Classical model-free predictive current control (MFPCC) is a robust control technique for a two-level inverter-fed induction-motor drive, with advantages that consist of a simple concept, rapid response, simple implementation, and excellent performance. However, the classic finite-control-set MFPCC still exhibits a significant current ripple. This article presents a method to enhance performance using a combination of model-free predictive current control (MFPCC) and discrete-space vector modulation (DSVM). The MFPCC employs an ultralocal model with an extended-state observer (ESO) that does not consider motor parameters, therefore improving the control system’s reliability by eliminating the parameter dependency. The proposed method integrates DSVM, which divides a single sample period into N equal intervals and generates virtual vectors to reduce stator current ripple. It achieves the minimum cost-function value across the entire operating range of the induction-motor (IM) drive by selecting the optimal vector from a limited set of permissible voltage vectors. Using DSVM effectively reduces the total harmonic distortion (THD) without any detrimental effects during transients or steady states. Experimental studies validate the effectiveness and superiority of the suggested technique over the Finite-Control-Set (FCS) MFPCC, which only considers real voltage vectors in its computations.

Found 
Found 

Top-30

Journals

1
1

Publishers

1
2
1
2
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?