Open Access
Open access
Energies, volume 18, issue 5, pages 1155

Wind-Mambaformer: Ultra-Short-Term Wind Turbine Power Forecasting Based on Advanced Transformer and Mamba Models

Publication typeJournal Article
Publication date2025-02-26
Journal: Energies
scimago Q1
SJR0.651
CiteScore6.2
Impact factor3
ISSN19961073
Abstract

As global climate change accelerates and fossil fuel reserves dwindle, renewable energy sources, especially wind energy, are progressively emerging as the primary means for electricity generation. Yet, wind energy’s inherent stochasticity and uncertainty present significant challenges, impeding its wider application. Consequently, precise prediction of wind turbine power generation becomes crucial. This paper introduces a novel wind power prediction model, the Wind-Mambaformer, which leverages the Transformer framework, with unique modifications to overcome the adaptability limitations faced by traditional wind power prediction models. It embeds Flow-Attention with Mamba to effectively address issues related to high computational complexity, weak time-series prediction, and poor model adaptation in ultra-short-term wind power prediction tasks. This can help to greatly optimize the operation and dispatch of power systems. The Wind-Mambaformer model not only boosts the model’s capability to extract temporal features but also minimizes computational demands. Experimental results highlight the exceptional performance of the Wind-Mambaformer across a variety of wind farms. Compared to the standard Transformer model, our model achieves a remarkable reduction in mean absolute error (MAE) by approximately 30% and mean square error (MSE) by nearly 60% across all datasets. Moreover, a series of ablation experiments further confirm the soundness of the model design.

Found 
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?