Open Access
Open access
Fire, volume 6, issue 8, pages 319

A Machine-Learning Approach to Predicting Daily Wildfire Expansion Rate

Publication typeJournal Article
Publication date2023-08-16
Journal: Fire
scimago Q1
SJR0.566
CiteScore3.1
Impact factor3
ISSN25716255
Building and Construction
Earth and Planetary Sciences (miscellaneous)
Forestry
Safety, Risk, Reliability and Quality
Environmental Science (miscellaneous)
Safety Research
Abstract

Accurate predictions of daily wildfire growth rates are crucial, as extreme wildfires have become increasingly frequent in recent years. The factors which determine wildfire growth rates are complex and depend on numerous meteorological factors, topography, and fuel loads. In this paper, we have built upon previous studies that have mapped daily burned areas at the individual fire level around the globe. We applied several Machine Learning (ML) algorithms including XGBoost, Random Forest, and Multilayer Perceptron to predict daily fire growth rate based on meteorological factors, topography, and fuel loads. Our best model on the entire dataset obtained a 1.15 km2 MAE. The ML model obtained a 90% accuracy when predicting whether a fire’s growth rate will increase or decrease the following day, compared to 61% using a logistic regression. We discuss the central factors that determine wildfire growth rate. To the best of our knowledge, this study is the first to perform such analyses on a global dataset.

Found 
Found 

Top-30

Journals

1
2
1
2

Publishers

1
2
3
4
1
2
3
4
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?