Open Access
Open access
Geosciences (Switzerland), volume 8, issue 9, pages 330

Oxygen and Carbon Stable Isotope Composition of Cretaceous to Pliocene Calcareous Paleosols in the Tian Shan Region (Central Asia): Controlling Factors and Paleogeographic Implications

Marc Jolivet 1
Philippe Boulvais 1
Laurie Barrier 2
Cécile Robin 1
Gloria Heilbronn 3
Julie Ledoyen 1
Quentin Ventroux 1
Yingying Jia 4
Zhaojie Guo 5
Show full list: 10 authors
Publication typeJournal Article
Publication date2018-09-03
scimago Q2
wos Q2
SJR0.613
CiteScore5.3
Impact factor2.4
ISSN20763263
General Earth and Planetary Sciences
Abstract

The Late Mesozoic–Cenozoic topographic and climate evolution of Central Asia remains highly debated. The final retreat of the proto-Paratethys Sea from the western Tarim Basin is thought to correspond in time with the onset of tectonic uplift in the Pamir, Tian Shan and Altai ranges, as well as with regional aridification. The oxygen and carbon isotope compositions of the sediment deposits in the various Central Asian basins have already been used to decipher both the topographic and climatic changes that occurred in that region during the Cenozoic, generally concentrating on one sedimentary section and/or on a limited time range and either using multiple-type samples including sandstone calcitic cements, marine carbonates, fossils, or paleosols. In order to get a homogeneous dataset, minimizing variations in the isotopic composition of the material depending on its type and/or depositional environment, we selected only calcareous paleosols sampled in several continuous sections covering a wide time range from the Late Jurassic to the Pliocene. Our sampling also covers a wide area encompassing the whole Tian Shan region, which allows detecting regional variations in the δ18O and δ13C values. We show that the influence of the distance to the proto-Paratethys Sea on the paleosol δ18O record was not significant. Besides local factors such as the occurrence of large lakes that can have a significant effect on the isotopic composition of the calcareous paleosols, the long-term evolution of both the δ18O and δ13C values possibly reflects the hypsometry of the river drainage systems that bring water to the basins. However, as it is commonly accepted that the δ18O of soil carbonates is controlled by the δ18O of in-situ precipitation, this last conclusion remains to be further investigated.

Found 
Found 

Top-30

Journals

1
2
3
1
2
3

Publishers

1
2
3
4
5
1
2
3
4
5
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?