Open Access
Open access
Journal of Cardiovascular Development and Disease, volume 8, issue 2, pages 8

Zebrafish Models of Cancer Therapy-Induced Cardiovascular Toxicity

Publication typeJournal Article
Publication date2021-01-22
scimago Q1
SJR0.621
CiteScore2.6
Impact factor2.4
ISSN23083425
PubMed ID:  33499052
Pharmacology (medical)
General Pharmacology, Toxicology and Pharmaceutics
Abstract

Purpose of review: Both traditional and novel cancer therapies can cause cardiovascular toxicity in patients. In vivo models integrating both cardiovascular and cancer phenotypes allow for the study of on- and off-target mechanisms of toxicity arising from these agents. The zebrafish is the optimal whole organism model to screen for cardiotoxicity in a high throughput manner, while simultaneously assessing the role of cardiotoxicity pathways on the cancer therapy’s antitumor effect. Here we highlight established zebrafish models of human cardiovascular disease and cancer, the unique advantages of zebrafish to study mechanisms of cancer therapy-associated cardiovascular toxicity, and finally, important limitations to consider when using the zebrafish to study toxicity. Recent findings: Cancer therapy-associated cardiovascular toxicities range from cardiomyopathy with traditional agents to arrhythmias and thrombotic complications associated with newer targeted therapies. The zebrafish can be used to identify novel therapeutic strategies that selectively protect the heart from cancer therapy without affecting antitumor activity. Advances in genome editing technology have enabled the creation of several transgenic zebrafish lines valuable to the study of cardiovascular and cancer pathophysiology. Summary: The high degree of genetic conservation between zebrafish and humans, as well as the ability to recapitulate cardiotoxic phenotypes observed in patients with cancer, make the zebrafish an effective model to study cancer therapy-associated cardiovascular toxicity. Though this model provides several key benefits over existing in vitro and in vivo models, limitations of the zebrafish model include the early developmental stage required for most high-throughput applications.

Found 
Found 

Top-30

Journals

1
1

Publishers

1
2
3
4
1
2
3
4
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?