Open Access
Open access
Journal of Composites Science, volume 5, issue 10, pages 269

Thermal, X-ray Diffraction and Oedometric Analyses of Silt-Waste/NaOH-Activated Metakaolin Geopolymer Composite

Publication typeJournal Article
Publication date2021-10-13
scimago Q2
SJR0.583
CiteScore5.0
Impact factor3
ISSN2504477X
Ceramics and Composites
Engineering (miscellaneous)
Abstract

The present research investigates the possibility to create a silt-waste reinforced composite through a NaOH-activated, metakaolin-based geopolymerization process. In this regard, we used thermal exo–endo analysis, X-ray diffraction (XRD), and oedometric mechanical tests to characterize the produced composites. In our experimental conditions, the tested material mixtures presented exothermic peaks with maximum temperatures of about 100 °C during the studied geopolymerization process. In general, the XRD analyses showed the formation of amorphous components and new mineral phases of hydrated sodalite, natrite, thermonatrite and trona. From oedometric tests, we observed a different behavior of vertical deformation related to pressure (at RT) for the various produced composites. The present work indicated that the proposed geopolymerization process to recycle silt-waste produced composite materials with various and extended mineralogy and chemical–physical properties, largely depending on both the precursors and the specific alkaline-activating solution. Thermal analysis, XRD, and oedometric mechanical tests proved to be fundamental to characterize and understand the behavior of the newly formed composite material.

Found 
Found 

Top-30

Journals

1
2
1
2

Publishers

1
2
3
1
2
3
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?