Open Access
Open access
том 13 издание 3 страницы 429

A Spatially Informed Machine Learning Method for Predicting Sound Field Uncertainty

Тип публикацииJournal Article
Дата публикации2025-02-25
scimago Q2
wos Q2
БС2
SJR0.579
CiteScore5.0
Impact factor2.8
ISSN20771312
Краткое описание

Predicting the uncertain distribution of underwater acoustic fields, influenced by dynamic oceanic parameters, is critical for acoustic applications that rely on sound field characteristics to generate predictions. Traditional methods, such as the Monte Carlo method, are computationally intensive and thus unsuitable for applications requiring high real-time performance and flexibility. Current machine learning methods excel at improving computational efficiency but face limitations in predictive performance, especially in shadow areas. In response, a machine learning method is proposed in this paper that balances accuracy and efficiency for predicting uncertainties in deep ocean acoustics by decoupling the scene representation into two components: (a) a local radiance model related to environmental factors, and (b) a global representation of the overall scene context. Specifically, the internal relationships within the local radiance are first exploited, aiming to capture fine-grained details within the acoustic field. Subsequently, local clues are combined with receiver location information for joint learning. To verify the effectiveness of the proposed approach, a dataset of historical oceanographic data has been compiled. Extensive experiments validate the efficiency compared to traditional Monte Carlo techniques and the superior accuracy compared to existing learning method.

Найдено 

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
0
Поделиться
Цитировать
ГОСТ |
Цитировать
Chen X. et al. A Spatially Informed Machine Learning Method for Predicting Sound Field Uncertainty // Journal of Marine Science and Engineering. 2025. Vol. 13. No. 3. p. 429.
ГОСТ со всеми авторами (до 50) Скопировать
Chen X., Li C., Wang H., Tai Y., Wang J., Migniot C. A Spatially Informed Machine Learning Method for Predicting Sound Field Uncertainty // Journal of Marine Science and Engineering. 2025. Vol. 13. No. 3. p. 429.
RIS |
Цитировать
TY - JOUR
DO - 10.3390/jmse13030429
UR - https://www.mdpi.com/2077-1312/13/3/429
TI - A Spatially Informed Machine Learning Method for Predicting Sound Field Uncertainty
T2 - Journal of Marine Science and Engineering
AU - Chen, Xiangmei
AU - Li, Chao
AU - Wang, Haibin
AU - Tai, Yupeng
AU - Wang, Jun
AU - Migniot, Cyrille
PY - 2025
DA - 2025/02/25
PB - MDPI
SP - 429
IS - 3
VL - 13
SN - 2077-1312
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2025_Chen,
author = {Xiangmei Chen and Chao Li and Haibin Wang and Yupeng Tai and Jun Wang and Cyrille Migniot},
title = {A Spatially Informed Machine Learning Method for Predicting Sound Field Uncertainty},
journal = {Journal of Marine Science and Engineering},
year = {2025},
volume = {13},
publisher = {MDPI},
month = {feb},
url = {https://www.mdpi.com/2077-1312/13/3/429},
number = {3},
pages = {429},
doi = {10.3390/jmse13030429}
}
MLA
Цитировать
Chen, Xiangmei, et al. “A Spatially Informed Machine Learning Method for Predicting Sound Field Uncertainty.” Journal of Marine Science and Engineering, vol. 13, no. 3, Feb. 2025, p. 429. https://www.mdpi.com/2077-1312/13/3/429.