Open Access
Open access
Materials, volume 14, issue 3, pages 557

The Effect of Complex Modification on the Impedance of Cement Matrices

Publication typeJournal Article
Publication date2021-01-24
Journal: Materials
scimago Q2
SJR0.565
CiteScore5.8
Impact factor3.1
ISSN19961944
PubMed ID:  33498937
General Materials Science
Abstract

The research results presented in this article were obtained by joint scientific research on creatingcement materials with reduced impedance. It is known that functional additives added to impart electrically conductive properties have a negative impact on physical and mechanical characteristics of the material. This study suggests using the multiwall carbon nanotubes in the amount of 7% from binder mass as a functional additive. The results obtained prove that the addition of this amount of the modifier does not lead to a significant decrease of strength characteristics. Calcium nitrate in the amount of 1–7% was added in order to level the strength loss and to ensure the effective stable electrical conductivity. The multifunctionality of using this salt has been proven, which is manifested in the anti-frost and anticorrosive effects as well in enhancement of electrical conductivity. The optimal composition of the additive with 7% of carbon nanotubes and 3% of calcium nitrate ensures a reduced electrical impedance of cement matrix. The electrical conductivity was 2440 Ohm, while the decrease of strength properties was within 10% in comparison tothe control sample. The nature of changes in the microstructure were studied to determine the influence of complex modifications that showed significant changes in the morphology of the hydration products. The optimum electrical characteristics of cementitious materials are provided due to the uniform distribution of carbon nanotubes and the formation of a network of interconnected micropores filled with the solution of calcium nitrate that provides additional and stable electrical conductivity over time.

Found 
Found 

Top-30

Journals

1
2
3
1
2
3

Publishers

1
2
3
4
5
6
1
2
3
4
5
6
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?