Open Access
Open access
Materials, volume 14, issue 21, pages 6715

Snow Melting Performance of Graphene Composite Conductive Concrete in Severe Cold Environment

Publication typeJournal Article
Publication date2021-11-08
Journal: Materials
scimago Q2
SJR0.565
CiteScore5.8
Impact factor3.1
ISSN19961944
PubMed ID:  34772241
General Materials Science
Abstract

The use of conductive concrete is an effective way to address snow and ice accretion on roads in cold regions because of its energy saving and high efficiency without interruption of traffic. Composite conductive concrete was prepared using graphene, carbon fiber, and steel fiber, and the optimum dosage of graphene was explored with resistivity as the criterion. Subsequently, under the conditions of an initial temperature of −15 °C and a wind speed of 20 km/h, the extremely severe snow event environment in cold regions was simulated. The effects of electrode spacing and electric voltage on snow melting performance of conductive concrete slab were explored. Results showed that graphene can significantly improve the conductivity of conductive concrete; the optimal content of graphene was 0.4% of cement mass in terms of resistivity. The snow-melting power of conductive concrete slab decreased with increase in electrode spacing and increased with increase in on-voltage. For an optimal input voltage of 156 V and an optimal electrode spacing of 10 cm, the time required to melt a 24 h snow thickness (21 cm), accumulated during a simulated severe snow event, was only 2 h, which provides an empirical basis for the application of graphene composite conductive concrete to pavement snow melting in cold regions.

Found 
Found 

Top-30

Journals

1
2
3
4
1
2
3
4

Publishers

1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?