Open Access
Open access
Materials, volume 16, issue 3, pages 941

Microstructural Features and Microhardness of the Ti-6Al-4V Alloy Synthesized by Additive Plasma Wire Deposition Welding

Publication typeJournal Article
Publication date2023-01-19
Journal: Materials
scimago Q2
SJR0.565
CiteScore5.8
Impact factor3.1
ISSN19961944
PubMed ID:  36769947
General Materials Science
Abstract

Wire arc additive manufacturing (AM) is able to replace the traditional manufacturing processes of Ti alloys. At the same time, the common drawback of Ti workpieces produced by AM via wire deposition welding is the formation of a coarse-grained dendritic structure, its strong anisotropy and, consequently, lower strength as compared to a monolithic alloy. In this work, a new method is proposed for the enhancement of the strength properties of the Ti-6Al-4V alloy synthesized by AM via wire deposition welding, which involves the use of a wire with an initial ultrafine-grained (UFG) structure. The UFG wire is characterized by a large number of defects of the crystalline lattice and grain boundaries, which will enable increasing the number of “crystallization centers” of the α-phase, leading to its refinement. The macro- and microstructure, phase composition and microhardness of the Ti-6Al-4V alloy samples were investigated. The microhardness of the alloy produced by layer-by-layer deposition welding using a UFG wire was shown to be on average 20% higher than that of the samples produced by a deposition welding using a conventional wire. The nature of this phenomenon is discussed, as well as the prospects of increasing the mechanical characteristics of Ti alloys produced by additive manufacturing.

Top-30

Journals

1
1

Publishers

1
2
1
2
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?